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Abstract

In bipartite causal inference with interference, two distinct sets of units exist: interventional

units, which receive treatment, and outcome units, where outcomes are measured. Which inter-

ventional units’ treatment can drive which outcome units’ outcomes is often depicted in a bipartite

network. We study bipartite causal inference with interference from observational data across time

and with a changing bipartite network. Under an exposure mapping framework, we define causal

effects specific to each outcome unit, representing average contrasts of potential outcomes across

time. We establish unconfoundedness of the exposure received by outcome units based on uncon-

foundedness assumptions on the interventional units’ treatment assignment and the random graph,

hence respecting the bipartite structure of the problem. Harvesting the time component of our

setting, causal effects are estimable while controlling only for temporal trends and time-varying

confounders. Our results hold for binary, continuous, and multivariate exposure mappings. For

binary exposure, we propose three matching algorithms to estimate the causal effect by matching

exposed to unexposed time periods for the same outcome unit. We show that the bias of resulting

estimators is bounded. We illustrate our approach through simulation studies and a study on the

effect of wildfire smoke on transportation by bicycle.

1 Introduction
Causal inference methodology most often focuses on the scenario where units are assigned to treatment

or control, and an outcome is measured on the same set of units. However, in some cases, the units

that receive the treatment are distinct from the units that experience the outcome. We refer to the

former as interventional units, and the latter as outcome units. The outcome units, which do not get

treatment themselves, are exposed to the treatment only through their connections to potentially treated
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interventional units. The causal dependencies across units can be described in a bipartite network, and,

as a result, this setting has been termed bipartite interference [Zigler and Papadogeorgou, 2021].

In this manuscript, we focus on bipartite causal inference with interference from observational data

measured over time and a time-varying bipartite network. Each interventional unit receives a treatment

level which can change over time according to an unknown assignment mechanism that depends on

covariates of the interventional units, the outcome units, and the network. At each time, the bipartite

network of causal dependencies across units is specified by a random process which itself can depend

on all the covariates. By considering an evolving network and temporal variations in the treatment

assignment, we provide a comprehensive framework for analyzing bipartite interference with temporal

data.

Existing work in causal inference with bipartite interference is cross-sectional and mostly considers

a fixed and known bipartite network. Zigler and Papadogeorgou [2021] introduced causal estimands

for bipartite causal inference, and developed weighting-based estimators under clustered interference.

The notion of an exposure mapping introduced in unipartite causal inference [e.g., Aronow and Samii,

2017, Forastiere et al., 2021] has been extended to the bipartite setting, stating that potential out-

comes depend on the interventional units’ treatment through known functions of the treatment and the

bipartite network. In Zigler et al. [2020], the bipartite network describes complex atmospheric and

geographic dependencies among units. In the experimental setting, under a linear exposure mapping,

Harshaw et al. [2023] designed estimators and inferential techniques for the effect of assigning all or

none of the interventional units to treatment. Pouget-Abadie et al. [2019] developed experimentation

techniques that improve the efficiency of estimators, and Brennan et al. [2022] focused on avoiding

inferential bias due to interference. Doudchenko et al. [2020] proposed using propensity scores to

account for confounding due to the network structure. All these studies have fixed causal networks,

except Wikle and Zigler [2023], which considers a probabilistic bipartite network in a cross-sectional

design.

For time series data, most of the causal inference literature focuses on the case without interference.

The literature on this topic is large, and it is out of scope to review here [see Abadie and Cattaneo, 2018,

Imbens, 2024, for surveys on the topic]. Relevant to our work are extensions of panel data methodology

to the case with unit-to-unit interference. In Cao and Dowd [2019], Grossi et al. [2020], Di Stefano

and Mellace [2020] and Menchetti and Bojinov [2020], a subset of units receives the treatment at some

point in time and remains treated thereafter, and in Clark and Handcock [2021] and Agarwal et al.

[2023] the units’ treatment assignments changes over time by endogenous nature or by design. None

of these methods has been considered in the bipartite setting.
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This work develops a causal inference framework for bipartite interference with time series obser-

vational data and a random bipartite network, which allows researchers to capture the dynamic nature

of causal relationships in real-world settings where networks and treatment assignments change over

time. Our contributions are the following: (a) Under an exposure mapping framework, we define

causal estimands of interest for each outcome unit in the bipartite temporal setting as contrasts of the

unit’s potential outcomes under different exposure levels averaged over time (Section 2). (b) We intro-

duce the causal assumptions of unconfoundedness for the treatment and network processes conditional

on variables of the interventional units, outcome units and the network. We establish the unconfound-

edness for the outcome unit’s exposure, which implies that we can estimate the outcome-unit-specific

effects while conditioning only on temporally-varying information (Section 2). In our work, the un-

confoundedness assumptions are at the level on which the randomness occurs (treatment, network) in

contrast with existing work that places assumptions on the exposure directly [Zigler et al., 2020, Doud-

chenko et al., 2020]. These results hold for binary, continuous, or multivariate exposures. (c) Focusing

on binary exposures, we develop matching procedures to estimate causal effects for each outcome unit

(Section 3). The proposed algorithms match an outcome unit’s exposed time periods to unexposed

time periods, one-to-one, one-to-two, or one-to-one-or-two, while specifying that matched time pe-

riods occur close in time, and satisfy balance constraints for the time-varying covariates. We show

that the bias of the matching estimators is bounded, and can be made arbitrarily small by imposing

stricter tolerance parameters (Section 3). (d) Our approach infers the causal effect of the interventional

units’ treatment on each outcome unit separately. We establish how results on multiple outcome units

can be combined to test a global null hypothesis of no treatment effect (Section 3). (e) In an extensive

simulation study, we showcase that our approach performs well for estimating the outcome-unit effects

and results in appropriate inference (Section 4). (f) We use our methodology to study whether smoke

from wildfires affects outdoor physical activity in the San Francisco Bay area (Section 5). We find

that exposure to smoke from wildfires leads to a decrease in the number of bike rental hours in the

city of San Francisco, but does not significantly alter bike use in nearby regions. We conclude with a

discussion (Section 6).
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2 Bipartite interference with time series observational data and a

random network

2.1 The setup

Let N = {n1, n2, · · · , nN} denote interventional units followed over time t = 1, 2, · · · , T . Each of

them has a collection of characteristics. We use the superscript ∗ for time-invariant variables, and the

subscript t for time-specific variables. Let X∗
i = (Xi1, Xi2, · · · , Xip∗X

)⊤ and Xti = (Xti1, Xti2, · · · , XtipX )
⊤

denote p∗X time-invariant and pX time-varying covariates, respectively, for the interventional unit ni,

and Ait ∈ A denote its treatment level at time t. Let X∗ = (X∗
1 X∗

2 · · · X∗
N)

⊤ be the N × p∗X matrix

of time-invariant covariates, Xt. = (Xt1 Xt2 · · · XtN)
⊤ the N×pX matrix of time-varying covariates

at time t, and At = (At1, At2, · · · , AtN)
⊤ the treatment vector at time t, across all interventional units,

with At ∈ AN . The interventional units do not experience the outcome.

The set of outcome units is denoted by M = {m1,m2, · · · ,mM}. Each unit mj has p∗W time-

invariant and pW time-varying covariates, W ∗
j = (Wj1,Wj2, · · · ,Wjp∗W

)⊤ and Wtj = (Wtj1,Wtj2, · · · ,WtjpW )⊤,

respectively. We use W ∗ = (W ∗
1 W ∗

2 · · · W ∗
M)⊤ and Wt. = (Wt1 Wt2 · · · WtN)

⊤ for the covariate

matrices of dimension M × p∗W and M × pW across the outcome units. For each unit mj , we measure

an outcome over time, denoted by Ytj .

We also consider network covariates that describe the relationship between interventional and out-

come units. We use P ∗ = {P ∗
ijs} for the N ×M × p∗P array of time-invariant network covariates, and

Pt = {Ptijs} for the N × M × pP array of time-varying network covariates at time t. Notation like

Pt.j. is used for the N × pP sub-matrix of Pt corresponding to outcome unit mj .

The random bipartite network can vary over time. Let Gt denote the N × M matrix of bipartite

connections. The vector Gt.j = (Gt1j, · · · , GtNj)
⊤ denotes the connectivity status of outcome unit

mj with all interventional units, taking values in G.j . We consider a binary bipartite network where

Gtij = 1, if ni and mj are connected at time t, and Gtij = 0 otherwise, but alternative, non-binary

specifications of G can be easily incorporated.

The outcome units do not receive an intervention themselves, rather than experience the treatment

of the interventional units through the bipartite network. We formalize this using exposure mappings.

For the outcome unit mj , the function htj : AN × G.j → Etj maps the interventional units’ treatment

assignment and the outcome unit’s bipartite connection vector to the outcome unit’s exposure value

at time t, where Etj denotes the set of all possible exposure values. Then, Etj = htj(At,Gt.j) is

the realized exposure of outcome unit mj at time t. The function htj(·) might return a scalar such
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as the proportion of interventional units with which mj is connected that are treated. It can also be

completely general, specified to return the vector of treatment levels for all connected interventional

units, or extended to depend on covariates.

In our study, the interventional units are all forest locations across North America. For these units,

potential time-invariant covariates X∗ include local species of vegetation. The M = 3 outcome units

are areas in the San Francisco Bay Area, with potential time-invariant covariates W ∗ such as de-

mographic information. Time-varying covariates for both sets of units, Xt,Wt, are weather-related

factors, such as temperature and precipitation. Network covariates P ∗ include the geographic dis-

tance of forest-area pairs. The transformation from wildfire to smoke follows complex chemical and

atmospheric reactions, and the resulting smoke can travel long distances, as described in the bipartite

network Gt. The Hazard Mapping System for smoke (HMS) monitors smoke plumes resulting from

fires, and it combines information on the presence of wildfires, At, with information on smoke trans-

port, Gt, to deduct the potential smoke exposure in each region in day t, Etj . The outcome Ytj is daily

bike riding hours using Lyft’s Bay Wheels program in each region.

2.2 Potential outcomes and causal estimands

Let Ytj(at, gt.j) denote the potential outcome for unit mj at time t had the treatment of the N interven-

tional units been at, and under bipartite connection gt.j for unit mj . We include the bipartite graph in

the notation for potential outcomes to establish that the graph plays a role in how the potential outcomes

vary by treatment, but we do not assume that the network is manipulable. The observed outcome cor-

responds to the potential outcome under the observed treatment and network, as Ytj = Ytj(At,Gt.j).

This notation implicitly states that previous treatments of the interventional units do not drive the

contemporaneous outcome of unit mj . We discuss this within the context of our study in Section 5.

Each treatment vector at might lead to a different potential outcome for unit mj . The following

assumption codifies that the interventional units’ treatment drives potential outcomes only through the

resulting outcome unit’s exposure based on the bipartite mapping.

Assumption 1. For all at,a
′
t ∈ AN , and gt.j, g

′
t.j ∈ G.j , if htj(at, gt.j) = htj(a

′
t, g

′
t.j) = etj , then

Ytj(at, gt.j) = Ytj(a
′
t, g

′
t.j), and the potential outcome can be denoted as Ytj(etj).

Under Assumption 1, the collection of all potential outcomes for outcome unit mj at time t is the

set Ytj(·) = {Ytj(etj), for etj ∈ Etj}. Similar constructions of exposure mappings and assumptions on

the potential outcomes have been discussed in the unipartite [Aronow and Samii, 2017, Forastiere et al.,

2021] and bipartite [Zigler et al., 2020, Harshaw et al., 2023, Doudchenko et al., 2020] interference

literature. Sävje [2024] discusses the implications of using exposure mappings in the definition of
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estimands and as assumptions on potential outcomes, providing interesting distinctions between the

two.

We consider estimands that are specific to each outcome unit. The contrast τtj(e, e′) = Ytj(e) −
Ytj(e

′) represents the fundamental effect of a change in exposure from e′ to e for the outcome unit mj

at time t. This unit- and time-specific estimand cannot be estimated without parametric assumptions.

Instead, we consider target estimands that represent temporally-averaged causal effects for unit mj for

a change in its exposure value. Specifically,

τj(e, e
′) =

1

T

T∑
t=1

τtj(e, e
′) =

1

T

T∑
t=1

[Ytj(e)− Ytj(e
′)] ,

represents the average effect of a change in exposure for unit mj across time, and

τ̃j(e, e
′) =

1∑
t I(Etj = e)

∑
t

(Ytj(e)− Ytj(e
′)) I(Etj = e)

over only those time periods with realized exposure equal to e. Therefore, the estimand τ̃j resembles

a temporal version of the average treatment effect on the treated. If exposures e and e′ are not both

possible for all time periods, the estimands τj(e, e′) and τ̃j(e, e
′) should only average over time periods

where both exposure values under investigation are possible.

In Section 3.5, we discuss how focusing on temporally-average estimands might lead to weaker

confounding adjustment requirements compared to estimands that average across units.

2.3 Ignorable assignments: assumptions and results

We establish unconfoundedness assumptions that allow us to estimate the estimands of Section 2. Our

assumptions pertain to the interventional units’ treatment assignment and the random bipartite network.

Since our estimands are specific to each outcome unit, we focus on unit mj throughout.

Assumption 2. (Unconfoundedness of the treatment assignment). The interventional units’ treatment

assignment at time t is independent of the potential outcomes of outcome unit mj , conditional on a

function of time f(t), time-invariant and time-varying covariates of the interventional units, outcome

unit mj , and their connections, i.e., P
(
At | Ytj(·), f(t),X∗,Xt.,W

∗,Wtj,P
∗,Pt.j.

)
= P

(
At |

f(t),X∗,Xt.,W
∗,Wtj,P

∗,Pt.j.

)
.

Under Assumption 2, the treatment level of interventional units can be driven by their individual

characteristics, characteristics of the outcome units, and general temporal trends such as those that alter

the overall prevalence of treatment. Therefore, the permitted treatment assignment mechanisms allow
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for complex bipartite dependencies that relate units from the two ends of the graph. Specifically, it

clarifies that confounding can arise not only from the covariates of the interventional units themselves,

but also from the features of the network and outcome units that contribute to the assignment of the

interventional units’ treatment.

Assumption 3. (Unconfoundedness of the bipartite network). The bipartite connection vector for unit

mj is independent of the unit’s potential outcomes given the treatment assignment, temporal trends

f(t), and characteristics of all interventional units, the outcome unit mj , and their connections, i.e.,

P
(
Gt.j|Ytj(·),At, f(t),X

∗,Xt.,W
∗,Wtj,P

∗,Pt.j.

)
= P

(
Gt.j|At, f(t),X

∗,Xt.,W
∗,Wtj,P

∗,Pt.j.

)
.

This assumption states that how outcome unit mj forms connections with interventional units might

depend on temporal trends, and characteristics of the units. It can also depend on the realized treatment

level, which is relevant in applications where the overall treatment prevalence might lead to higher or

lower outreach of the interventional units. The probabilistic formalization of unconfoundedness in

Assumption 3 implicitly assumes a random network generation. That said, confounding can also arise

in scenarios with a known and fixed network as illustrated in Doudchenko et al. [2020], therefore our

results are also applicable in that case.

Assumptions 2 and 3 allow for complex dependencies of the treatment and network processes

on a very large class of covariates. We establish that, under these assumptions, the exposure that

outcome unit mj receives from the interventional units’ treatment through the bipartite network is

unconfounded. This result holds for exposure mappings that are arbitrarily complex. (The proof is in

Supplement A.)

Proposition 1. (Exposure unconfoundedness). If Assumptions 2 and 3 hold, then outcome unit mj’s

exposure assignment is independent of its potential outcomes given the temporal trend f(t), and covari-

ate information on the units and the network, i.e., P (Etj | Ytj(·), f(t),X∗,Xt.,W
∗,Wtj,P

∗,Pt.j.) =

P (Etj | f(t),X∗,Xt.,W
∗,Wtj,P

∗,Pt.j.).

Statements like the exposure unconfoundedness in Proposition 1 have been evoked as assump-

tions in previous work on bipartite interference [Zigler et al., 2020, Doudchenko et al., 2020]. How-

ever, here, exposure unconfoundedness is established while acknowledging that, in a bipartite inter-

ference context, the exposure experienced by an outcome unit is governed by mechanisms operating

at the treatment and network levels. This has crucial implications for practice. Assumptions 2 and

3 yield fruitful and practical insights for identifying confounders that exist in the treatment-outcome
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or network-outcome relationships. This is particularly relevant in bipartite interference contexts for

which we have a clear grasp of the physical or mechanistic processes driving the network structure.

Therefore, these assumptions provide guidance that renders confounding adjustment more tangible,

nuanced and actionable within the bipartite setting.

The unconfoundedness result in Proposition 1 means that we can acquire an unbiased estimator

of the temporally-averaged causal effect on unit mj , τj(e, ẽ), by comparing outcomes of time periods

with similar values of the covariates in the conditioning set and different values of their exposure,

and averaging over the covariate distribution across time [see Forastiere et al., 2021, for a related

discussion]. We can estimate the causal effect τ̃j(e, ẽ) similarly, by altering which distribution we

average over, to reflect the distribution of the covariates among time periods with Etj = e [Abadie and

Imbens, 2006]. Importantly, the covariates X∗,W ∗ and P ∗ are constant across time. Therefore, they

are implicitly always conditioned on when studying the same outcome unit across time. This implies

that the time-invariant covariates that create differences in the assignment mechanism of treatment

across interventional units, or the assignment mechanism of bipartite connections across pairs, need

not be measured when focusing on estimands that average over time. Instead, we need to control for

time-varying information only to estimate causal effects. We discuss this further in Section 3.5.

3 Estimation via matching exposed to unexposed time periods
Temporally-averaged causal effects can be estimated by controlling for time-varying information, for

exposure mappings that return binary, continuous, or multivariate exposures. In our study of the effects

of smoke from wildfires, a region’s exposure can be specified as binary, indicating the presence or

absence of smoke exposure for the population residing in the area. Therefore, from here onwards, we

focus on the estimation of causal effects under binary exposures.

Viewing the time periods as the elementary unit of observation, in Section 3.1 we introduce three

matching algorithms that match exposed time periods to unexposed time periods under constraints that

balance time-varying information. In Section 3.2, we define the corresponding causal effect estimators

and we show that, under reasonable assumptions on the outcome model, the estimators’ bias is bounded

and can be controlled by the algorithms’ tuning parameters. We discuss an inferential approach for one

outcome unit in Section 3.3, and for multiple outcome units in Section 3.4. Lastly, in Section 3.5, we

discuss the advantages in estimation of estimands that are specific to each outcome unit and average

across time, over estimands that average across units.
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3.1 Algorithms for matching exposed to unexposed time periods

We propose three novel matching algorithms for estimating causal effects in bipartite interference

settings with time series observational data and a binary exposure. Since we focus on outcome unit

specific estimands, our matching algorithms match time periods with and without exposure for the

same outcome unit. For notational simplicity, we drop notation pertaining to the unit, and we refer to

a time period as exposed if Et = 1, and unexposed otherwise. We focus on the average change in the

unit’s outcome among the exposed time periods, had the unit been exposed versus unexposed, defined

in Section 2 as τ̃(1, 0). In the presence of multiple outcome units, the algorithms would be applied to

each unit separately.

The three matching approaches, ‘Matching 1-1’, ‘Matching 1-2’, and ‘Matching 1-1/2’, match an

exposed time period to one, two, or either one or two unexposed time periods, respectively. The algo-

rithms are constructed as integer programming optimization problems with the objective of maximiz-

ing the number of matches under a set of constraints. Integer programming optimization algorithms

have been previously used in the causal inference literature [Zubizarreta, 2012, Zubizarreta et al.,

2013, Keele et al., 2014]. Our formalization is different since the fundamental unit of observation is

time (rather than physical units) and the confounders correspond to time-varying information.

3.1.1 Matching 1-1.

We use te ∈ Te = {t : Et = 1} and tu ∈ Tu = {t : Et = 0} to denote a time period during which the

outcome unit is exposed and unexposed, respectively. We introduce binary indicators atetu for each pair

of exposed and unexposed time periods that describe whether the exposed time period te is matched to

the unexposed time period tu (atetu = 1), or not (atetu = 0). The objective of the optimization problem

is to maximize the number of matches over all possible matching indicators a ∈ {0, 1}|Te|×|Tu|, as

max
a

∑
te,tu

atetu , (A)

where we use
∑
te,tu

to denote the summation over both sets of indices,
∑
te∈Te

∑
tu∈Tu

. The optimization

problem is performed under a number of constraints. Firstly, we impose that each time point, exposed

or unexposed, can be matched at most once,

∑
tu

atetu ≤ 1, ∀te ∈ Te, and
∑
te

atetu ≤ 1, ∀tu ∈ Tu. (A.1)
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If, on the contrary, a certain time period was used in multiple matches, we have found in practice that it

could have a disproportionally large influence in the causal estimator, resulting to inaccurate variance

estimation and inference.

We impose additional constraints that target the balance of time-varying information including

temporal trends and time-varying covariates. In reality, little (if any) information is given about the

temporal trends f(t). We balance temporal trends indirectly through balancing the average time of

matches. Specifically, the average time difference of matched exposed and unexposed time points is at

most δ ≥ 0, as ∣∣∣∣∣∑
te,tu

atetu(te − tu)

∣∣∣∣∣ ≤ δ
∑
te,tu

atetu . (A.2)

This constraint does not necessarily imply that each of the matched pairs is close in time, rather than

they are close on average. The constant δ can be set arbitrarily small, even to δ = 0. In order to

improve the balance of local temporal trends and to reduce the computationally intensive search for

possible match combinations, we also impose that each matched pair of time periods is at most ϵ apart

in time,

|atetu(te − tu)| ≤ ϵ, ∀te ∈ Te, ∀tu ∈ Tu. (A.3)

Finally, we balance the time-varying covariates between exposed and unexposed matched time

periods. Since we exclude the outcome unit index, Wt is the vector of outcome unit mj’s covariates,

and Pt is the N × pP matrix including the network covariates for mj only. We impose that∣∣∣∣∣∑
te,tu

atetu(Wte −Wtu)

∣∣∣∣∣ ≤ 1pW · δ′
∑
te,tu

atetu , (A.4)

which states that the temporal covariates are on average balanced in matched exposed and unexposed

time periods. The constant δ′ is usually chosen to be 0.05 or 0.1 standard deviations of the correspond-

ing covariate, though its choice should be part of the design phase of the study and should be decided

upon without looking at outcomes [Zubizarreta, 2015].

The time-varying covariates, Xt. and Pt are of dimension N × pX and N × pP , respectively. In

theory, balance constraints could be imposed so that matched time periods are similar with respect

to all N(pX + pP ) variables. However, these balance constraints would likely be high-dimensional,

and incorporating them could drastically reduce the number of matches, especially when the number

of interventional units is large. Instead, we propose matching summaries of these covariates across

interventional units. For a vector q = (q1, q2, · · · , qN)⊤, let X̃t = qTXt = (X̃t1, X̃t2, · · · , X̃tpX )
⊤
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denote the q-summaries of the interventional units’ pX covariates, and similarly for P̃t = qTPt. We

impose that ∣∣∣∣∣∑
te,tu

atetu(X̃te − X̃tu)

∣∣∣∣∣ ≤ 1pX · δ′
∑
te,tu

atetu , and∣∣∣∣∣∑
te,tu

atetu(P̃te − P̃tu)

∣∣∣∣∣ ≤ 1pP · δ′
∑
te,tu

atetu .

(A.5)

The vector q controls which covariate summary should be balanced, and its choice will be driven by

the problem at hand. For example, by setting qi = 1
n

for all i, the algorithm balances the average

covariate value across interventional units for matched time periods. Alternatively, qi could give dif-

ferent weights to the covariate value of interventional units based on their geographic proximity to

outcome unit mj , or the frequency with which they are connected. For ease of exposition, we used the

same vector q in the balance constraints for all covariates in (A.5). Different vectors q can be used for

different covariates, and multiple summaries of the same covariate under different vectors q could be

balanced.

By investigating the problem through its true bipartite lens, rather than its unipartite counterpart,

the discussion on the needs for confounding adjustment due to interventional unit, outcome unit, or

network covariates becomes transparent. For example, in certain scenarios such as the study of Sec-

tion 5, it is reasonable to argue that time-varying confounding due to interventional unit and network

covariates does not exist, in which case constraints (A.5) need not be used. Such understanding of

the needs of confounding adjustment would not be obvious if addressing the same study question by

projecting it on a unipartite framework. We expand on this in Section 5.

3.1.2 Matching 1-2.

We propose an alternate matching algorithm to match an exposed time point to two unexposed time

points, one occurring temporally before and one after. Consider matching indicators atetu1 tu2 for

whether the exposed time te ∈ Te is matched to the unexposed timestamps tu1 , tu2 ∈ Tu. The ob-

jective function of the optimization algorithm is to maximize the number of matches, which now are

of the form (te, tu1 , tu2),

max
a

∑
te,tu1 ,tu2

atetu1 tu2 . (B)

The constraints are similar in spirit to the ones for algorithm (A), but they are adapted to accommodate

matching of one exposed time period to two unexposed ones. Exposed and unexposed time periods

can be used in a match at most once, though if an exposed time period is matched, it is matched to two
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unexposed ones:

∑
tu1 ,tu2

atetu1 tu2 ≤ 1, ∀te ∈ Te

∑
te,tu1 ,tu2

atetu1 tu2I(tu1 = tu) +
∑

te,tu1 ,tu2

atetu1 tu2I(tu2 = tu) ≤ 1, ∀tu ∈ Tu

(B.1)

We impose constraints that balance time and time-varying covariates. Specifically, Constraint (B.2)

balances, on average, the time of the exposed time period compared to the average time of its unex-

posed matches, ∣∣∣∣∣∣
∑

te,tu1 ,tu2

atetu1 tu2

(
te −

tu1 + tu2

2

)∣∣∣∣∣∣ ≤ δ
∑

te,tu1 ,tu2

atetu1 tu2 , (B.2)

but it does not restrict the time difference for each match. Constraint (B.3) restricts the temporal

difference and order of time periods for each individual match, as

∣∣atetu1 tu2 (te − tui
)
∣∣ ≤ ϵ, for i = 1, 2

atetu1 tu2 (te − tu1) ≥ 0, and atetu1 tu2 (tu2 − te) ≥ 0,
(B.3)

for all te ∈ Te, and tu1 , tu2 ∈ Tu. The first line imposes that the time difference between an exposed

time period and each of its matched unexposed ones cannot exceed ϵ. The second line forces a tem-

poral sequence within each match, requiring the exposed period to fall within the unexposed ones. In

addition, the average value of time-varying covariates is balanced when comparing the exposed time

periods with the average of their matches. For the outcome-unit time-varying covariates this constraint

is ∣∣∣∣∣∣
∑

te,tu1 ,tu2

atetu1 tu2

(
Wte −

Wtu1
+Wtu2

2

)∣∣∣∣∣∣ ≤ 1pW · δ′
∑

te,tu1 ,tu2

atetu1 tu2 , (B.4)

and for the interventional unit and network covariates, it takes the form∣∣∣∣∣∣
∑

te,tu1 ,tu2

atetu1 tu2

(
X̃te −

X̃tu1
+ X̃tu2

2

)∣∣∣∣∣∣ ≤ 1pX · δ′
∑

te,tu1 ,tu2

atetu1 tu2 , and

∣∣∣∣∣∣
∑

te,tu1 ,tu2

atetu1 tu2

(
P̃te −

P̃tu1
+ P̃tc2

2

)∣∣∣∣∣∣ ≤ 1pP · δ′
∑

te,tu1 ,tu2

atetu1 tu2 .

(B.5)
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Matching seeks unexposed periods that resemble the exposed ones in order to predict what would

have happened during the exposed time periods, had they been unexposed. Therefore, matching one

exposed unit to two unexposed ones can improve accuracy in predicting the missing potential outcome,

over matching one to one. Ensuring that the exposed period falls between matched unexposed ones

(B.3) enhances balance in temporal trends. For instance, monotonic temporal trends would be more

effectively balanced when matching an exposed period with unexposed periods both before and after.

Therefore, Matching 1-2 can be more accurate in imputing missing potential outcomes for exposed

time periods, and more efficient in estimating causal effects, compared to Matching 1-1.

3.1.3 Matching 1-1/2.

While Matching 1-2 might provide more accurate predictions of missing potential outcomes in some

cases, it might lead to fewer matched exposed units than Matching 1-1, especially in scenarios with

a relatively high proportion of exposed time periods. We propose an approach that combines 1-1 and

1-2 matching and enjoys the advantages of both. This approach matches one exposed period to one

or two unexposed time periods. Specifically, we consider binary matching indicators of the form atetu

and atetu1 tu2 where atetu = 1 denotes that exposed time period te is matched to unexposed time period

tu, whereas atetu1 tu2 = 1 denotes that te is matched to two unexposed time periods, tu1 and tu2 . The

target is to maximize the number of matched exposed time periods as

max
a

∑
te,tu

atetu +
∑

te,tu1 ,tu2

atetu1 tu2

 . (C)

The constraints we impose are similar in spirit to those in optimization problems (A) and (B), but they

are re-designed to account for the presence of two types of matches. Each time period can be involved

in either a match of type 1-1 or 1-2, and at most once,

∑
tu

atetu +
∑

tu1 ,tu2

atetu1 tu2 ≤ 1,

∑
te,tu

atetuI(tu = t̃u)+
∑

te,tu1 ,tu2

atetu1 tu2I(tu1 = t̃u) +
∑

te,tu1 ,tu2

atetu1 tu2I(tu2 = t̃u) ≤ 1,
(C.1)
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for all te ∈ Te and t̃u ∈ Tu. Moreover, the average time difference between an exposed time period

and its one or two matches is bounded by the constant δ ≥ 0, as∣∣∣∣∣∣
∑
te,tu

atetu(te − tu) +
∑

te,tu1 ,tu2

atetu1 tu2

(
te −

tu1 + tu2

2

)∣∣∣∣∣∣ ≤ δ

( ∑
te,tu

atetu +
∑

te,tu1 ,tu2

atetu1 tu2

)
. (C.2)

Furthermore, the time difference between matched exposed and unexposed time periods is bounded by

ϵ in 1-1 or 1-2 matches, and in 1-2 matches the exposed time period lies temporally between the two

matched unexposed ones, as

|atetu(te − tu)| ≤ ϵ,
∣∣atetu1 tu2 (te − tui

)
∣∣ ≤ ϵ, for i = 1, 2

atetu1 tu2 (te − tu1) ≥ 0, and atetu1 tu2 (tu2 − te) ≥ 0.
(C.3)

Next, on average, matches are balanced in terms of the outcome unit characteristics∣∣∣∣∣∑
te,tu

atetu(Wte −Wtu) +
∑

te,tu1 ,tu2

atetu1 tu2

(
Wte −

Wtu1
+Wtu2

2

) ∣∣∣∣∣
≤ 1pW · δ′

(∑
te,tu

atetu +
∑

te,tu1 ,tu2

atetu1 tu2

) (C.4)

and the time-varying covariates of the interventional units and the network,∣∣∣∣∣∑
te,tu

atetu(X̃te − X̃tu) +
∑

te,tu1 ,tu2

atetu1 tu2

(
X̃te −

X̃tu1
+ X̃tu2

2

)∣∣∣∣∣
≤ 1pX · δ′

(∑
te,tu

atetu +
∑

te,tu1 ,tu2

atetu1 tu2

)
∣∣∣∣∣∑
te,tu

atetu(P̃te − P̃tu) +
∑

te,tu1 ,tu2

atetu1 tu2

(
P̃te −

P̃tu1
+ P̃tu2

2

)∣∣∣∣∣
≤ 1pP · δ′

(∑
te,tu

atetu +
∑

te,tu1 ,tu2

atetu1 tu2

)
(C.5)

Matching 1-1/2 is expected to yield more matches than Matching 1-2 since it allows some exposed

time points to be matched to a single unexposed one. At the same time, when possible, it allows for

exposed time periods to be matched to two unexposed ones, which can improve the balance of temporal

trends and improve accuracy in imputing the missing potential outcomes for exposed time periods.

Even in the case where the exposure is not binary, matching algorithms designed for binary expo-
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sures can still be useful for estimating interpretable effects in more complex scenarios. For instance,

in the setting of Pouget-Abadie et al. [2019], Doudchenko et al. [2020], Brennan et al. [2022], and

Harshaw et al. [2023] where an outcome unit’s exposure ranges from 0 to 1, one can categorize the

continuous exposure to different levels, and adapt the matching algorithms to match units with different

values of the categorized exposure.

3.2 The matching estimators and theoretical guarantees

The matches produced by the three algorithms are the basis for estimating the causal effect τ̃(1, 0)

since they are used to impute an exposed time period’s counterfactual outcome, had it been unexposed.

If the exposed time period te is matched one-to-one with the unexposed tu, its counterfactual outcome

is imputed as Y imp
te (0) = Ytu . Alternatively, when an exposed time period te is matched with two

unexposed ones, tu1 and tu2 , its counterfactual outcome is imputed as the average of the two unexposed

outcomes, Y imp
te (0) = (Ytu1

+ Ytu2
)/2.

The set of matched exposed time periods and the imputed outcomes might differ across the match-

ing algorithms, resulting in three causal estimators, one for each algorithm. The causal estimators

have the same form, defined as the average contrast of observed and imputed outcomes for matched,

exposed time periods in T ∗
e , as

τ̂ =
1

|T ∗
e |
∑
t∈T ∗

e

[
Yte − Y imp

te (0)
]
. (1)

Specifically, for Matching 1-1, T ∗
e = {t : Et = 1 and atetu = 1 for some tu}, and similarly for

Matching 1-2 or Matching 1-1/2. We denote these estimators as τ̂1, τ̂2 and τ̂1/2. We implicitly assume

that T ∗
e is non-empty; otherwise, matching while satisfying balance constraints is not possible and

drawing causal inferences from such data might not be trustworthy.

We show that the bias of the proposed matching estimators is bounded. We consider cases where

the outcome is a linear or non-linear function of the exposure, time, and time-varying covariates, in

line with Zubizarreta [2015]. We first consider the linear case.

Theorem 1. If Yt(e) = β0 + β1e+ β2t+β⊤
3 Wt +β⊤

4 X̃t +β⊤
5 P̃t + ϵt(e) for all t = 1, 2, · · · , T , with

E(ϵt(e)|Et, t,Wt,Xt,Pt) = 0, then |E(τ̂ − τ)| ≤ δ|β2|+ δ′(∥β3∥1+∥β4∥1+∥β5∥1) for all matching

estimators, where δ and δ′ are the balance constraints tuning parameters.

The proof is in Supplement A. According to Theorem 1, the bias of the matching estimators is

bounded by algorithmic parameters controlling how well time-varying information is balanced, and

the strength of time-varying confounding in the outcome structure. Since δ, δ′ can be set arbitrarily
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small, the bias of the matching estimators can, in principle, be guaranteed to be small. In practice,

using small values for δ, δ′ might return a small number of matches and an estimated effect that is not

representative of all exposed time periods.

These results extend to the more realistic case where the outcome model is non-linear in the con-

founding structure. In this case, we extend the matching algorithms to impose balance constraints for

auxiliary variables targeting higher order and localized versions of time and the measured covariates.

For example, we define localized versions of the sth outcome unit covariate, Wts, by breaking its sup-

port [a, b] into (b−a)/ℓ intervals of an arbitrary small length ℓ. The midpoint of the rth interval for Wts

is denoted by ξsr. We construct the auxiliary variables W †
tsr = (Wts−ξsr)I(Wts ∈ [ξsr−ℓ/2, ξsr+ℓ/2])

for covariate Wts, as well as higher orders W k
ts, for k = 1, 2, · · · , K−1. We include balance constraints

(similarly to the ones in (A.4)) for these auxiliary variables in all three matching algorithms.

We show that the bias of the causal effect estimators is still bounded, where the bound is driven by

algorithmic parameters and the smoothness of functions in the outcome model.

Theorem 2. Suppose Yt(e) = θ+βe+h0(t)+
pW∑
s=1

hs(Wts)+
pX∑
s=1

hpW+s(X̃ts)+
pP∑
s=1

hpW+pX+s(P̃ts)+ϵt(e),

with E(ϵt(e)|Et, t,Wt,Xt,Pt) = 0 and functions h0, h1, . . . , hpW+pX+pP that are K-times differen-

tiable on their support. If h(k)
s represents the kth derivative of hs, and |h(k)

s (x)| ≤ c for some c > 0 for

all s, x in the function’s support, and k = 1, 2, . . . , K, then |E(τ̂−τ)| ≤ CT δ+CWXP δ
′+CTWXP ℓ

K−1,

where CT , CWXP and CTWXP are constants proportional to c that depend on the smoothness of the

functions with the corresponding indices.

The exact form of CT , CWXP and CTWXP is shown in Supplement A.3. Theorem 2 establishes

that, by setting the algorithms’ tuning parameters δ, δ′ and ℓ to be small enough, the bias of the cor-

responding causal effect estimators can be guaranteed to be negligible. Since the exposure is binary,

the form βe in the outcome model suffices. Extending our results to allow for interactions among

the covariates would be theoretically straightforward. However, practically, the matching algorithms

would need to impose additional balancing constraints, which might hinder our ability to find adequate

matches.

This is particularly relevant since, as with all matching procedures, the estimated effect is represen-

tative of the population of only those exposed time periods that are matched, and the targeted estimand

is, in fact,
≈
τ (1, 0) =

∑
te∈T ∗

e
[Yte(1)− Yte(0)]/|T ∗

e |. Therefore, its interpretation might be complicated

when the proportion of unmatched exposed time periods is large. In these cases, and if the causal effect

is heterogeneous across time, the estimated effect might differ from the effect on all the exposed time

periods τ̃(1, 0). We investigate the performance of our estimators with heterogeneous effects in the
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simulations of Section 4.

3.3 Inference

Our inferential approach is formulated in a unified manner for the three matching estimators. By

viewing matching as part of the design phase, we construct confidence intervals conditional on the

matched data [Ho et al., 2007]. Since our estimators are averages of differences between a time period’s

observed and imputed outcome, we construct Wald-type confidence intervals. Specifically, if T ∗
e is the

set of matched exposed time periods, and ŝ2 =
∑

te∈T ∗
e

(
Yte −Y imp

te (0)− τ̂
)2
/
(
|T ∗

e |− 1
)
, we construct

an α-level confidence interval as
[
τ̂ − z1−αŝ/

√
|T ∗

e |, τ̂ + z1−αŝ/
√
|T ∗

e |
]
, where z1−α is the 1 − α

quantile of the standard normal. We similarly acquire a p-value for testing the null hypothesis of no

causal effect on outcome unit mj , Hj0 : τ̃j = 0 v.s. HjA : τ̃j ̸= 0 as pj = P
(
|Z| >

∣∣∣ τ̂j

ŝ/
√

|T ∗
e |

∣∣∣),
where Z ∼ N(0, 1). P-values in one-sided hypothesis tests can be obtained similarly.

In practice, time series data may display temporal correlation beyond what can be explained by

measured covariates. Despite that, the simulations in Section 4 demonstrate that the proposed inferen-

tial approach yields valid inferences even with temporally correlated outcomes. Setting aside temporal

correlation, the inferential approach is expected to be conservative when time-varying confounders are

present, in that α-level confidence intervals cover the true value more than 100α% of the time. That

is because the proposed matching algorithms do not balance time-varying covariates for each match

separately. As a result, the unexposed time periods that are used to impute the potential outcomes

might have substantially different values for the temporal covariates compared to the corresponding

exposed time periods. Therefore, the differences of observed and imputed outcomes include fluctua-

tions in temporal predictors, leading to an estimated variance that is larger than the truth. We illustrate

this slight over-coverage in the simulations of Section 4, where we observe that balancing covariates

within every match could alleviate this issue at the cost of returning fewer matches.

3.4 Testing a null hypothesis of no causal effect with multiple outcome units

Our matching algorithms and estimators are designed to evaluate the effect of the treatment on each

outcome unit separately. In the presence of multiple outcome units, and when making general policy

evaluations, we might be interested in studying whether the exposure has an effect on any of them.

The hypothesis we wish to test is

H0 : τj = 0, ∀j = 1, 2, · · · ,M v.s. HA : There exist at least one j such that τj ̸= 0.
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We acquire a p-value for testing the null hypothesis of no effect on unit mj , according to Section 3.3,

for all outcome units. We adjust these p-values by performing a false discovery rate (FDR) correction

for multiple comparisons [Benjamini and Hochberg, 1995]. Then, we compare the adjusted p-values to

the pre-specified α-level. If all adjusted p-values are greater than α, we fail to reject the null hypothesis

H0; otherwise, we reject the null hypothesis and identify the affected units as those with adjusted p-

values less than α.

3.5 The potential advantages of temporal analyses in bipartite settings

Alternative estimands to the ones in Section 2.2 represent cross-sectional contrasts such as the aver-

age causal effect across units for each time period, defined as γt(e, ẽ) = 1
M

∑M
j=1[Ytj(e) − Ytj(ẽ)].

Estimation of these unit-average estimands requires that we measure and adjust for all meaningful

differences across units that confound the exposure-outcome relationship, which can be complex and

high-dimensional. For example, in the study of Zigler and Papadogeorgou [2021], the treatment as-

signment of power plants and population health can vary across the United States in intricate ways, all

of which need to be adjusted for estimating unit-average effects.

In contrast, estimation of the temporally-average causal effects for each outcome unit requires that

we account for time-varying confounding only, which might be simpler to understand and measure, an

observation that was also noted in the interrupted time series literature [Rockers et al., 2015]. For ex-

ample, our results show that if the treatment of interventional units is constant over time, any variation

in the exposure for an outcome unit is due to the varying bipartite network, and therefore confound-

ing is only due to covariates that predict the network and the outcome (Assumption 3). In this case,

if the random network depends only on the units’ time-invariant characteristics like their geographic

distance, no confounding adjustment would be necessary to estimate interpretable and policy-relevant

estimands. Alternatively, if the network is driven by naturally-occurring processes with temporal varia-

tion such as meteorology, one would only need to account for those for causal effect estimation, which

are simpler to understand and measure. Furthermore, if confounding variables show relatively smooth

temporal trends during the time window under study, such as weather variables, collecting them is

unnecessary since they are indirectly balanced in our matching algorithms (Theorems 1 and 2).

The inherent bipartite nature of the data suggests that temporal confounding is likely to display

smoother trends compared to unipartite scenarios. In bipartite settings, the separation of physical units

implies that decisions affecting one set of units may not immediately manifest and impact the other.

Consequently, if an interventional unit variable influences the outcome units, it might be due to its

overall trend over time, such as its average over preceding time periods. In that case, this ‘moving
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average’ covariate value will be relatively smooth across time. If left unmeasured, the bias occurring

due to its non-temporal component is expected to be small. We illustrate this in the simulations of

Section 4.

4 Simulation Study
We perform simulations to investigate the performance of our matching estimators and the properties

of our inferential procedures.

4.1 Simulation setup

We consider a setting with N = 50 interventional units and M = 200 outcome units at randomly

generated locations over the [0, 1]× [0, 1] square, followed over T = 400 time periods.

We consider covariates for the interventional units, the outcome units, and the network: (a) (Smooth

temporal trends) Covariates Xti1 and Wtj1 are generated independently from Gaussian processes with

the same smooth function of time as the mean, and an exponential decay kernel for the covari-

ance matrix. Therefore, these covariates represent similar but not identical smooth temporal trends.

(b) (Location-varying covariates) Covariates Xti2 and Wtj2 are constant across time, Xti2 = Xi2 and

Wtj2 = Wj2, and they are drawn independently from a scaled beta distribution with parameters that

depend on the unit’s location. Therefore, these covariates have similar structure across space. (c) (Lo-

cation- and time-varying covariates) Covariates Xti3, Wtj3 and Ptij are independent across units, they

have temporal trends, but they also include non-smooth temporal variation. (d) (Bipartite covariates)

We define covariates for one set of units based on the covariates of the other set. For interventional

units, we define location-varying covariate Xi4, and time-varying covariate Xti5, that are weighted

averages of covariates Wi2 and Wtj3 of neighboring outcome units, respectively. Covariates Wi4 and

Wti5 for outcome units are similarly defined based on covariates Xi2 and Xti3 of interventional units.

(e) (Non-smooth time-varying covariate) Covariates Xt6,Wt6 are equal to each other, and represent

non-smooth temporal trends. Draws from these covariates are depicted in Supplement B.

4.1.1 Data generative mechanisms.

We consider five data generative models corresponding to different confounding structures. Across

these scenarios, the treatment assignment for the interventional units depends on smooth temporal

trends through Xti1, on interventional unit covariates through Xti2, Xti3, on outcome unit covariates

through Xti4, Xti5, on non-smooth temporal trends through Xti3, Xti5, Xti6, and on network covariates

through Ptij . The entries of the bipartite network are generated independently from Bernoulli distri-

butions with probability that, under the different scenarios, might depend on time and units’ spatial
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proximity. The exposure of unit mj at time t is specified as Etj = I(
∑N

i=1AtiGtij ≥ d). The outcome

is generated based on the exposure and the covariates Wti1,Wti2, · · · ,Wti6 and Ptij which include

smooth and non-smooth temporal trends, outcome and interventional unit covariates, and network co-

variates.

Table 1 shows the variables that are used in each data generative model component across the

different scenarios. These five scenarios correspond to five different confounding structures for the

exposure-outcome relationship: (a) no confounding, (b) confounding by smooth temporal variables,

(c) confounding by location-varying variables, (d) confounding by all time-varying information, and

(e) all types of confounding. The simulation scenarios are detailed in Supplement B. Confounding

arises if a predictor of the outcome is correlated with a predictor of the treatment assignment, the

bipartite network, or both. For example, in scenario (b), the role of Xti1 and Wtj1 induces confounding

due to the variables’ common smooth temporal trend, and in scenario (d), the role of Wtj3 and Xti5

induce confounding due to the outcome unit covariate. Therefore, these data generative models allow

for complex confounding structures in accordance to Assumptions 2 and 3.

For each scenario, we consider three sparsity levels for the exposure by tuning d, dense, medium,

and sparse, corresponding to about 150-200, 80-120, and 30-60 exposed time periods, respectively.

Therefore, in total, we consider 15 simulation scenarios, and generate 500 data sets for each one of

them.

Table 1: Table of five confounding scenarios, in which treatment A, network graph G, and observed
outcome Y are associated with corresponding confounding covariates.

Smooth time Location-varying Time-varying

Scenario Component t X1 W1 dist X2 W2 X4 W4 X3 W3 X5 W5 X6(= W6) P

(a) No confounders
A
G
Y ×

(b) Time-smooth
confounders

A ×
G ×
Y ×

(c)
Location-varying
confounders

A × ×
G ×
Y × ×

(d)
Time-varying
confounders

A × × × ×
G × ×
Y × × × ×

(e) All confounders
A × × × × × × ×
G × ×
Y × × × × × × ×
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4.1.2 Estimation and inference evaluation.

We estimate the temporally-averaged causal effect specific to an outcome unit. We fit our matching

algorithms employing balance constraints on the time-varying covariates W3,W5,W6 and P only,

shown in the last wide column of Table 1. Since the covariates X1,W1 represent smooth temporal

trends (denoted by f(t) in Proposition 1), we do not consider balance constraints on them, illustrating

that the constraints on time suffice. For a consistent choice of tuning parameter δ′ across covariates, we

standardize each of the time-varying covariates W3,W5,W6 and P̃ using the pooled standard deviation

of exposed and unexposed time periods [Rosenbaum and Rubin, 1985]. For example, the entries of

W3 are divided by
√

(Var(Wt3 for exposed t) + Var(Wt3 for unexposed t))/2, and similarly for the

rest of the covariates. Therefore, δ′ denotes the allowed covariate imbalance as the proportion of the

covariate’s standard deviation. We consider three sets of tuning parameters (δ, δ′, ϵ). The results shown

here correspond to values (2, 0.05, 6). Alternative choices for the tuning parameters are discussed in

Section 4.2.3 and shown in the Supplement. We estimate the causal effect using (1), and acquire 95%

confidence intervals as detailed in Section 3.3.

Since there do not exist alternative approaches in the literature for estimating causal effects in

bipartite time series settings, we implement three naı̈ve approaches. Naı̈ve-t uses temporal information

for the single outcome unit and estimates an effect as the difference of mean outcomes between exposed

and unexposed time periods. Naı̈ve-j uses information across outcome units for a single time period

and estimates an effect as the difference of mean outcomes between exposed and unexposed outcome

units. Lastly, Naı̈ve-all estimates an effect as the overall difference of mean outcomes in exposed

and unexposed time periods across units. Additional details on the naı̈ve approaches are included in

Supplement C.

Finally, for the scenarios with temporal confounding (b, d, and e), we consider simulations where

all treatment effects are set to zero, and evaluate the properties of the inferential technique of Sec-

tion 3.4 for testing the global null hypothesis at the 0.05 level.

4.2 Simulation results

4.2.1 Estimation and inference on a single unit.

Table 2 shows the estimation and inferential results for estimating the effect for one outcome unit

using the three naı̈ve approaches, and the three matching estimators. For each estimator we report

bias, mean squared error and coverage of 95% intervals. For the matching estimators, we also report

the proportion of exposed time periods that were matched.
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Table 2: Simulation results of single-unit estimations. Bias, mean squared error (MSE), coverage of
95% intervals (%), and proportion of exposed time points being matched (%). We show simulation
results for the 3 naı̈ve approaches and 3 matching estimators over 5 confounding scenarios, and for
3 exposure levels. ‘N’ stands for ‘naı̈ve’. Bold values correspond to the minimum MSE across the
matching methods for each simulation scenario.

Dense Medium Sparse

Method Bias MSE Cover Prop Bias MSE Cover Prop Bias MSE Cover Prop

(a)1

N-t 0.00 0.010 95.4 - -0.01 0.013 95.0 - -0.01 0.022 95.0 -
N-j 0.00 0.207 94.0 - 0.00 0.316 94.8 - 0.03 0.716 94.6 -

N-all 0.00 0.000 94.8 - 0.00 0.001 95.2 - 0.00 0.001 95.8 -
1-1 0.00 0.012 95.0 97.8 -0.01 0.020 95.4 100.0 -0.01 0.040 95.6 100.0

1-1/2 0.00 0.011 95.8 97.8 -0.01 0.017 96.2 100.0 -0.01 0.031 94.6 100.0
1-2 0.00 0.013 97.2 62.3 -0.01 0.016 95.4 90.8 -0.01 0.028 95.6 98.7

(b)

N-t -0.93 1.22 11.4 - -0.95 1.294 11.8 - -0.96 1.382 15.8 -
N-j 0.01 0.097 95.8 - 0.00 0.054 93.4 - 0.00 0.047 94.4 -

N-all -0.90 0.810 0.0 - -0.94 0.886 0.00 - -0.98 0.962 0.0 -
1-1 0.00 0.018 96.0 62.5 0.00 0.024 92.8 85.1 0.010 0.037 94.8 97.8

1-1/2 0.00 0.018 94.8 62.5 0.00 0.022 94.2 85.1 0.010 0.035 93.8 97.8
1-2 0.00 0.023 94.0 41.0 0.00 0.024 95.0 59.9 0.01 0.034 94.8 80.6

(c)

N-t 0.00 0.012 95.2 - 0.00 0.023 94.6 - 0.00 0.048 95.0 -
N-j -3.58 23.305 77.6 - -3.82 28.191 81.6 - -4.27 45.544 88.0 -

N-all -3.32 11.44 0.0 - -3.55 13.042 0.00 - -3.89 15.654 0.0 -
1-1 0.01 0.020 94.4 99.7 0.00 0.037 95.0 100.0 -0.01 0.080 94.8 100.0

1-1/2 0.01 0.017 95.2 99.7 0.01 0.033 94.2 100.0 0.00 0.073 92.6 100.0
1-2 0.00 0.016 94.4 85.5 0.00 0.032 94.0 97.4 0.00 0.071 92.0 99.1

(d)

N-t -1.19 1.479 0.0 - -1.23 1.572 0.00 - -1.36 1.943 4.4 -
N-j 0.01 0.076 96.3 - 0.00 0.042 94.4 - 0.00 0.032 94.8 -

N-all -1.20 1.438 0.00 - -1.24 1.551 0.0 - -1.37 1.872 0.0 -
1-1 -0.05 0.023 98.0 67.6 -0.05 0.024 98.4 85.0 -0.03 0.062 95.2 99.7

1-1/2 -0.05 0.022 98.4 67.6 -0.05 0.024 98.2 85.0 -0.04 0.054 96.6 99.7
1-2 -0.04 0.026 98.8 43.5 -0.04 0.025 97.6 59.4 -0.04 0.053 96.0 87.5

(e)

N-t 2.48 6.417 0.0 - -2.6 7.092 0.0 - -2.78 8.114 0.0 -
N-j -2.20 11.39 79.3 - -1.88 6.566 78.6 - -1.84 6.457 78.1 -

N-all -3.46 12.048 0.0 - -3.72 13.869 0.0 - -4.06 16.583 0.0 -
1-1 -0.06 0.027 98.4 75.0 -0.06 0.033 98 94.1 -0.03 0.045 98.8 99.6

1-1/2 -0.07 0.028 98.0 75.0 -0.06 0.032 97.2 94.1 -0.04 0.041 98.4 99.6
1-2 -0.07 0.028 99.2 48.9 -0.06 0.032 98.6 71 -0.04 0.042 97.8 88.3

1The scenarios shown in Table 1 correspond to (a) No confounders, (b) Time-smooth confounders, (c) Location-varying
confounders, (d) Time-varying confounders, and (e) All confounders.

In the case of no confounding, all estimators are unbiased. In the presence of location-varying

confounding (scenario (c)), the Naı̈ve-j estimator that is based on comparing outcomes across units

is biased. In contrast, under temporal confounding (scenarios (b) and (d)), the Naı̈ve-t estimator is

biased. Naı̈ve-all is biased under both confounding structures. In contrast, the matching estimators

have minimal bias in all cases.

In terms of MSE, Matching 1-1 performs best or close to best in the dense scenarios, and Matching

22



Table 3: Simulation results for using Naı̈ve-t and 3 adjusted matching methods to test the global null
hypothesis for scenarios (b), (d) and (e), and under a medium exposure level.

Average
estimator mean

Average rate of
p-value ≤ 0.05

Rate of
min(p-value) ≤ 0.05

Rate of FDR
min (adj.p-value) ≤ 0.05

(b)

Naı̈ve-t -0.95 0.894 1.000 1.000
1-1 -0.01 0.053 1.000 0.088

1-1/2 -0.01 0.054 1.000 0.090
1-2 0.00 0.056 1.000 0.110

(d)

Naı̈ve-t -1.26 0.999 1.000 1.000
1-1 -0.04 0.018 0.966 0.014

1-1/2 -0.04 0.018 0.970 0.016
1-2 -0.04 0.014 0.910 0.016

(e)

Naı̈ve-t -2.64 1.000 1.000 1.000
1-1 -0.06 0.015 0.946 0.004

1-1/2 -0.06 0.016 0.954 0.004
1-2 -0.06 0.011 0.848 0.002

1-2 in the sparse scenarios. Matching 1-1/2 performs as well, or close to as-well as the best estimator

across all scenarios considered, while maintaining a high proportion of matched exposed time periods.

Matching 1-1 and Matching 1-1/2 yield the same proportion of matched exposed time periods. This

alignment is logical as the matching algorithms aim to maximize matches, with the matches generated

under Matching 1-1 also possible under Matching 1-1/2. For all three matching algorithms, the match-

ing rate varies by the sparsity level of the exposure, with higher rates under sparser exposures. As

expected, Matching 1-2 returns the smallest proportion of matched exposed time periods. Combined

with the fact that it has the lowest MSE in sparse scenarios, this illustrates that Matching 1-2 returns

more accurate imputed potential outcomes than Matching 1-1 or 1-1/2. The coverage of 95% intervals

for the matching estimators is close to nominal across all scenarios.

4.2.2 Testing the global null hypothesis.

We focus on the scenarios with temporal, or all types of confounding (scenarios b, d, and e), and under

a medium frequency for the exposure. We alter the simulations to impose that the global null holds,

and impose that τj = 0 for all outcome units. We generate 500 data sets for each one of the three

scenarios. We acquire point estimates and p-values for the exposure effect on each of the 200 outcome

units, and adjust the p-values using the FDR correction detailed in Section 3.4.

The optimizer returned a solution for approximately 85% of the outcome units for each matching

method. The results are in Table 3. We report the average estimated effect across outcome units with

matches and across data sets, the proportion of the available p-values across the outcome units and

data sets that are below 0.05, the proportion of data sets where any of the available p-values is below

0.05, and the proportion of data sets where any of the FDR-adjusted p-values is below 0.05.

Since Naı̈ve-t is biased in the presence of temporal confounding, its inferential performance suffers,
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and using this estimator would mistakenly reject the global null hypothesis every time, using FDR-

corrected p-values or not. For the matching estimators, up to 6 % of the p-values across outcome units

and data sets are below 0.05. Hence, it is not surprising that the minimum (unadjusted) p-value across

outcome units is below 0.05 in most data sets, emphasizing the necessity of controlling for multiple

comparisons to maintain the level of the test, especially with numerous outcome units. With FDR-

adjusted p-values, the rate of rejection of the null hypothesis is much closer to the target level of the

test. Matching methods in cases (d) and (e) are conservative in rejecting the global null hypothesis,

consistent with the conservative nature of individual outcome unit hypothesis tests.

4.2.3 Additional simulations.

Additional simulations are detailed in Supplement D. In Supplement D.1, we show that the match-

ing estimators without any adjustment for measured covariates are unbiased under temporally-smooth

confounding. These results illustrate that smooth temporal trends such as those in X1,W1 are implic-

itly adjusted through the time constraints, and need not be measured. In Supplement D.2, we assess

the performance of matching methods with alternative tuning parameter values. Results are robust

to the choice of δ and ϵ, though 1-2 often returns a substantially lower number of matches under

strict conditions. Despite some residual bias under larger δ′ values in some scenarios, interval cover-

age is close to nominal across all scenarios. In Supplement D.3, we illustrate that applying covariate

constraints to each match alleviates overcoverage of 95% intervals, supporting the discussion in Sec-

tion 3.3 regarding the conservativeness of our inferential approach. In Supplement D.4, we illustrate

that confounding can be induced by predictors of the network and the outcome, even if they are not

predictors of the treatment assignment, and matching estimators perform accurately in this scenario

as well. All the simulations are under a homogeneous treatment effect to separate the evaluation of

estimation efficiency from the discussion on targeted estimand, and ease comparison of estimators. In

Supplement D.5, we show that under treatment effect heterogeneity, results from matching estimators

are representative of the matched population of exposed time periods. Lastly, in Supplement D.6, we

find that temporal correlation in the outcome variable has minimal impact on the performance of our

inferential procedure.

5 The Impact of Wildfire Smoke Exposure on Bikeshare Hours
Wildfires contribute to increased levels of ozone and fine particulate matter. Smoke from these fires

is carried by the wind to populated regions, potentially causing reductions in the population’s outdoor

activity [Doubleday et al., 2021]. We quantify the effect of wildfire smoke on the use of bikeshare
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San Francisco
East Bay

San Jose

San Francisco

East Bay

San Jose

Figure 1: Left: The wildfire smoke coverage on August 31, 2021, where yellow represents exposure
to wildfire smoke. Right: The bike share locations in the three outcome units.

services from January 2021 to September 2023. In this study, it is reasonable to assume that the

individuals’ decision to ride a bicycle might be driven by the exposure value on the same day only,

and any temporal carry-over effects are minimal. We acquire daily smoke exposure from the National

Oceanic and Atmospheric Administration’s Hazard Mapping System (HMS). An area is considered

exposed under light or heavier smoke thickness according to HMS, and unexposed otherwise. The

outcome represents the daily total number of bikeshare hours in the San Francisco, East Bay, and San

Jose areas in California, US, as measured through the publicly-available Bay Wheels data provided by

Lyft. Figure 1 shows smoke exposure for a single day during our time period and the locations of the

stations in the three areas. Additional information on the data is available in Supplement E.1.

Traditional unit-to-unit cross-sectional analyses would be infeasible in our study as it would be

impossible to control for attributes of interventional and outcome units, with only three outcome units

(see discussion in Section 3.5). However, given daily data on 1,003 days, approximately 140 of which

are exposed across the three areas, our approach can be applied to estimate the effect of smoke exposure

on each outcome area, without the need to consider location-varying covariates, and controlling for

time-varying confounding only.

The matching algorithms balance daily temperature, humidity, precipitation, wind speed, and wind

direction as potential time-varying confounders, and smooth seasonal trends are balanced implicitly.

We find it plausible that no further covariates are necessary beyond weather-related data to meet the

unconfoundedness assumptions. This reasoning stems from our understanding of the bipartite struc-

ture of the problem: factors (other than weather conditions) influencing wildfire occurrence and smoke

dispersion patterns are unlikely to impact biking activity in distant locations, and economic indices

fluctuating over time that might affect biking activity are likely unrelated to wildfire presence in North

American forests. Therefore, while estimating the causal effect of exposure using data at the outcome

unit level may resemble a unipartite setting, the investigation of unconfoundedness based on measured
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Table 4: The effect of wildfire smoke on bikeshare hours in San Francisco, East Bay, and San Jose for
Naı̈ve-t and the matching estimators. For each region, the three columns correspond to the estimate,
p-value (bold font if below 0.05), and number of matches.

San Francisco East Bay San Jose

Naı̈ve-t 0.973 (1.000) 0.110 (1.000) 0.022 (0.810)

Maching 1-1 -0.601 (0.014) 101 -0.043 (0.190) 103 -0.002 (0.235) 100

Matching 1-1/2 -0.521 (0.021) 101 -0.031 (0.265) 103 -0.002 (0.196) 100

Matching 1-2 -0.100 (0.356) 56 -0.001 (0.490) 59 -0.001 (0.279) 59

covariates stems by viewing the question at hand from a bipartite perspective, and explicitly investi-

gating the treatment assignment at the level of the interventional units. Consequently, even though

implementation does not necessarily differ, there exist subtle, yet important differences for how con-

founding might be investigated under a bipartite lens, compared to a unipartite one.

Table 4 shows the estimates and p-values from Naı̈ve-t and the three matching estimators under the

tuning parameters (δ, δ′, ϵ) = (2, 0.1, 6). The estimate from the naı̈ve approach is positive, implying

that smoke increases biking activity. This unreasonable result is likely due to temporal confounding

because most exposed time periods occur during the late summer and fall months when biking might

be more prevalent. Instead, the matching estimators estimate that smoke exposure reduces biking

activity in San Francisco, while riding behavior in the East Bay and San Jose is not influenced by

wildfire smoke exposure. The matching algorithms use unexposed time periods during the summer

and fall months only as matches (see Supplement E.2 for an illustration). These results are statistically

significant at the 0.05 level for San Francisco under Matching 1-1, or 1-1/2. Since exposure is relatively

dense during the summer and fall months, Matching 1-2 returns approximately half the number of

matches compared to the other two matching algorithms, which might explain larger p-values for this

estimator.

We conducted a sensitivity analysis to the definition of exposure, and performed the same analysis

when an area is categorized as exposed during a give day under medium or high smoke thickness, and

unexposed under no or light smoke thickness (see Supplement E.3). We find that all effect estimates are

negative and similar or larger in magnitude in that case, even though most results are not-statistically

significant, likely due to the small number of exposed days (40 or less) and as a result the small number

of matches.
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6 Discussion
We developed a causal inference framework for time series data with bipartite interference and a ran-

dom network. Focusing on time-averaged estimands, we showed that controlling for time-varying

information allows us to attribute outcome differences to exposure’s causal effects. We introduce three

algorithms for matching exposed and unexposed time periods and corresponding estimators, which

perform well across various scenarios. In principle, weighting or outcome modeling estimators could

be employed in our context. However, in the bipartite setting, the exposure arises as a function of

the treatment and network, whose mechanisms are often unknown and would need to be modeled,

adding complexity to a weighting-based estimation procedure. At the same time, outcome modeling

approaches would require correct specification of confounding adjustment, which is particularly com-

plicated in bipartite settings where confounding relates to both the treatment and the network, as we

show in Section 2. Matching methods bypass such issues.

Despite the merits of the proposed framework, several open questions remain. How to define and

estimate effects for time series settings under more complicated exposure mappings that might involve

multivariate or continuous exposures persists as an open question. Towards that front, future work

could investigate matching, outcome modeling, and weighting approaches with the relative merits

and drawbacks discussed above. Moreover, in certain applied contexts it would be crucial to allow

for potential outcomes to depend on previous exposures [Bojinov and Shephard, 2019]. A careful

consideration of necessary assumptions and an approach for estimation in this setting remains to be

addressed in future research.
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A Theoretical results

A.1 Proof of exposure unconfoundedness

Proof of Proposition 1. First, since X∗,W ∗,P ∗ are time-invariant, we can treat them as constants in

the condition and thus omit them for simplicity. Next, under Assumption 2:

P (Etj = e|Ytj(·), f(t),Wtj,Xt,Pt.j.)

=
∑
∀g,a

P (Etj = e|G·tj = g,At = a,Ytj(·), f(t),Wtj,Xt,Pt.j.)·

P (G·tj = g|At = a,Ytj(·), f(t),Wtj,Xt,Pt.j.)·

P (At = a|Ytj(·), f(t),Wtj,Xt,Pt.j.)

=
∑
∀g,a

I (htj(a, g) = e)P (G·tj = g|At = a, f(t),Wtj,Xt,Pt.j.)P (At = a|f(t),Wtj,Xt,Pt.j.)

The first equality holds because of the law of total probability and the conditional probability formula.

The first component in the second equality is simply the indicator function of the exposure vector

equivalent to a known vector or not; the second utilizes Assumption 3 and the third applies Assumption

2.

A.2 Proofs of bias bounds

Proof of Theorem 1. We consider the case of bounding the bias of the matching algorithms when the

outcome model has a linear form in the exposure and time. Define I1 as the set of (te, tu) and I2 as the

set of (te, tu1 , tu2). Omitting j, set E = (E1, E2, · · · , ET )
T for the observed exposure time series at

unit mj . Let t = (1, 2, · · · , T )T be the sequence of time points.

• Matching 1-1

|E(τ̂ − τ)| =

=

∣∣∣∣∣∣E
E

 1

|I1|
∑

(te,tu)∈I1

Yte − Ytu

−

(
1

|Te|
∑
te∈Te

Yte(1)− Yte(0)

)∣∣∣∣∣E, t,W ,X,P

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

|I1|
∑

(te,tu)∈I1

(
β1 + β2te − β2tu + β⊤

3 Wte − β⊤
3 Wtu + β⊤

4 X̃te − β⊤
4 X̃tu + β⊤

5 P̃te − β⊤
5 P̃tu

)
− β1

∣∣∣∣∣∣
≤ 1

|I1|
|β2|

∣∣∣∣∣∣
∑

(te,tu)∈I1

(te − tu)

∣∣∣∣∣∣+ 1

|I1|

∣∣∣∣∣∣
∑
s

β3s
∑

(te,tu)∈I1

(Wtes −Wtus)

∣∣∣∣∣∣+
3



1

|I1|

∣∣∣∣∣∣
∑
s

β4s
∑

(te,tu)∈I1

(X̃tes − X̃tus)

∣∣∣∣∣∣+ 1

|I1|

∣∣∣∣∣∣
∑
s

β5s
∑

(te,tu)∈I1

(P̃tes − P̃tus)

∣∣∣∣∣∣
< δ|β2|+ δ′(∥β3∥1 + ∥β4∥1 + ∥β5∥1).

• Matching 1-2

|E(τ̂ − τ)| =

=

∣∣∣∣∣∣E
E

 1

|I2|
∑

(te,tu1 ,tu2 )∈I2

Yte −
1

2
(Ytu1 + Ytu2 )

−

(
1

|Te|
∑
te∈Te

Yte(1)− Yte(0)

)∣∣∣∣∣E, t,W ,X,P

∣∣∣∣∣∣
=

∑
(te,tu1 ,tu2 )∈I2

(
β1 + β2te −

β2
2
(tu1 + tu2) + β⊤

3 Wte −
β⊤
3

2
(Wtu1

+Wtu2
)+

β⊤
4 X̃te −

β⊤
4

2
(X̃tu1

+ X̃tu2
) + β⊤

5 P̃te −
β⊤
5

2
(P̃tu1

+ P̃tu2
)

)
− β1

∣∣∣∣
≤ 1

|I2|
|β2|

∣∣∣∣∣∣
∑

(te,tu1 ,tu2 )∈I2

(
te −

1

2
(tu1 + tu2)

)∣∣∣∣∣∣+ 1

|I2|

∣∣∣∣∣∣
∑
s

β3s
∑

(te,tu1 ,tu2 )∈I2

Wtes −
1

2
(Wtu1s

+Wtu2s
)

∣∣∣∣∣∣+ · · ·

< δ|β2|+ δ′(∥β3∥1 + ∥β4∥1 + ∥β5∥1).

• Matching 1-1/2

|E(τ̂ − τ)|

=

∣∣∣∣∣∣E
E

 1

|I|
∑

(te,tu)∈I1

(Yte − Ytu) +
∑

(te,tu1 ,tu2 )∈I2

(
Yte −

1

2
(Ytu1 + Ytu2 )

)−

−

 1

|I|
∑
j∈I

Yte(1)− Yte(0)

∣∣∣∣∣∣E, t,W ,X,P

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1|I|
∑

(te,tu)∈I1

(
β1 + β2te − β2tu + β⊤

3 Wte − β⊤
3 Wtu + β⊤

4 X̃te − β⊤
4 X̃tu + β⊤

5 P̃te − β⊤
5 P̃tu

)
+

∑
(te,tu1 ,tu2 )∈I2

(
β1 + β2te −

β2
2
(tu1 + tu2) + β⊤

3 Wte −
β⊤
3

2
(Wtu1

+Wtu2
)+

+β⊤
4 X̃te −

β⊤
4

2
(X̃tu1

+ X̃tu2
) + β⊤

5 P̃te −
β⊤
5

2
(P̃tu1

+ P̃tu2
)

)
− β1

∣∣∣∣
≤ 1

|I|
|β2|

∣∣∣∣∣∣
∑

(te,tu)∈I1

(te − tu) +
∑

(te,tu1 ,tu2 )∈I2

(
te −

1

2
(tu1 + tu2)

)∣∣∣∣∣∣+
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1

|I|

∣∣∣∣∣∣
∑
s

β3s

 ∑
(te,tu)∈I1

Wtes −Wtus +
∑

(te,tu1 ,tu2 )∈I2

Wte −
1

2
(Wtu1s

+Wtu2s
)

∣∣∣∣∣∣+ · · ·

< δ|β2|+ δ′(∥β3∥1 + ∥β4∥1 + ∥β5∥1).

Proof of Theorem 2.

We study the bias of the matching estimator based on Matching 1-1. The bias bounds of estimators

based on Matching 1-2 and Matching 1-1/2 are derived similarly, and therefore are omitted here.

We bound the quantity hs(Wtes) − hs(Wtus) below, and similar bounds can be acquired for the

functions hs that correspond to X̃ and P̃ .∣∣∣∣∣∣
∑

(te,tu)∈I1

hs(Wtes)− hs(Wtus)

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
(b−a)/ℓ∑
r=1

∑
(te,tu)∈I1

(
K−1∑
k=1

γkW
k†
tesr +Rte,r,K)− (

K−1∑
k=1

γkW
k†
tusr +Rtu,r,K)

∣∣∣∣∣∣
≤

(b−a)/ℓ∑
r=1

K−1∑
k=1

|γk|

∣∣∣∣∣∣
∑

(te,tu)∈I1

W k†
tesr −W k†

tusr

∣∣∣∣∣∣+ 2|I1|
|h(K)|

s (ξsr)

K!
(ℓ/2)K

 .

≤ |I1|

(b−a)/ℓ∑
r=1

(
K−1∑
k=1

δ′|γk|+ 2
|h(K)

s (ξsr)|
K!

(ℓ/2)K)


≤ |I1|

(
(bs − as)/ℓ(

K−1∑
k=1

δ′c/k! + 2
c

K!
(ℓ/2)K)

)
,

where γk :=
h
(k)
s (ξsr)

k!
≤ c

k!
is the coefficient of the Taylor expansion of order k around ξsr, and Rt,r,k is

the residual of Taylor expansion such that |Rt,r,k| ≤ |h(K)|
s (ξsr)
K!

(ℓ/2)K ≤ c
K!
(ℓ/2)K . Therefore, we can

show

|E(τ̂ − τ)| =

=

∣∣∣∣∣∣E
E

 1

|I1|
∑

(te,tu)∈I1

Yte − Ytu

−

(
1

|Te|
∑
te∈Te

Yte(1)− Yte(0)

)∣∣∣∣∣E, t,W ,X,P

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

|I1|
∑

(te,tu)∈I1

(
θ + β + (h0(te)− h0(tu)) +

pW∑
s=1

(hs(Wtes)− hs(Wtus))+

pX∑
s=1

(hpW+s(X̃tes − hpW+s(X̃tus)) +
pP∑
s=1

(hpW+pX+s(P̃tes)− hpW+pX+s(P̃tus))
)
− β1

∣∣∣
5



≤

(
(T − 1)/ℓ(

K−1∑
k=1

δc/k! + 2
c

K!
(ℓ/2)K)

)
+
∑
s

(
(bs − as)/ℓ(

K−1∑
k=1

δ′c/k! + 2
c

K!
(ℓ/2)K)

)
≤ CT δ + CWXP δ

′ + CTWXP ℓ
K−1.

A.3 The bounding constants in Theorem 2

Although we match discrete time periods, we think of the smooth temporal trend as a continuous

function for time over the whole interval [0, T ]. For the time-varying covariates, their supports are

indexed by their corresponding additive function, which is [bs − as] for every hs, s = 1, 2, · · · , pW +

pX + pP . The constants CT , CWXP and CTWXP are equal to

CT =
K−1∑
k=1

(T − 1)c

ℓk!
,

CWXP =

pW+pX+pP∑
s=1

K−1∑
k=1

(bs − as)c

ℓk!
,

CTWXP = (
1

2
)K−1

(
(T − 1)c

K!
+

pW+pX+pP∑
s=1

(bs − as)c

K!

)
.

B A Detailed Simulation Description of Section 4
We consider settings with N = 50 interventional units and M = 200 outcome units at randomly

generated locations on the [0, 1] × [0, 1] square in an (x, y) coordinate system. The locations of the

interventional and outcome units are generated in the following manner. For the interventional units,

the x coordinates of units 1 to 10, 31 to 40 are generated independently from Uniform(0, 0.5), while

the x coordinates for the remaining units are generated from a Uniform(0.5, 1) distribution. The y

coordinates for the interventional units are generated from a Uniform(0, 0.5) distribution for units 1

to 10 and 21 to 30, and from Uniform(0.5, 1) distribution for the remaining units. Similarly, for the

outcome units, the x coordinates for units 1 to 68 and 113 to 156 are drawn from a Uniform(0, 0.5)

distribution, while the x coordinates for the remaining outcome units are drawn from a Uniform(0.5, 1)

distribution. The y coordinates are drawn from Uniform(0, 0.5) for units 1 to 50 and 101 to 150, and

from Uniform(0.5, 1) for the remaining units.

We generate covariates, treatments, graphs, exposures, and outcomes over T = 400 time periods.

We create scenarios with or without different confounders between exposure and outcome.
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Figure S.2: Visualization of interventional and outcome unit covariates over time and units. The top left
panel shows 5 realizations from the Gaussian process for X..1. The top right figure is the [0, 1]× [0, 1]
location square with one realization for the location of the interventional points and the corresponding
location-varying covariate X.2. The bottom right figure is 5 realizations from the Gaussian process for
W..1 and the bottom right figure is a realization from the locations of the outcome units colored by the
values of one realization of W.2.
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B.1 The covariates

We consider six covariates for the interventional units, six covariates for the outcome units, and one

network covariate. Specifically, the covariates we consider are as follows:

• Interventional unit covariates:

1. Confounders equal to smooth functions of time: X.i1 = (X1i1, X2i1, . . . , XT i1) is generated from

a Gaussian process with Gaussian correlation kernel and mean representing a smooth temporal

trend as X.i1 ∼ N (f(t),Σ), where Σt1,t2 = exp(−(t1−t2)2)
2·1002 and f(t) = 3

400
t. Realizations of this

covariate X.i1 for five interventional units is shown on the top-left panel of Figure S.2.

2. Location-varying confounders: We consider a covariate that varies across unit but not across time,

Xti2 = Xi2. For units i inside the [0, 0.5] × [0, 0.5] rectangle, we generate Xi2/8 ∼ Beta(9, 1);

7



Figure S.3: Visualization of non-smoothing interventional covariates X..3 and X..6. The left panel
shows one realization for X..3 and the right panel shows one realization for X..6.
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Figure S.4: Visualization of the location-varying outcome covariate W.4 and the non-smooth covari-
ate W..5. The left panel is the [0, 1] × [0, 1] location square with one realization for the location of
the outcome units and the corresponding location-varying covariate W.4. The right panel shows one
realization for W..5 for the outcome units which is defined based on the interventional units’ covariate
X..3 in Figure S.3 and their geographical distance.
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for the rest i’s, Xi2/8 ∼ Beta(1, 9). A visualization of this covariate for all intervention units is

shown at the top-right panel of Figure S.2.

3. Time-varying confounders: Xti3 ∼ N(0, t/100), i = 1, · · · , N, t = 1, · · · , T. This variable

varies across time without a smooth pattern. A realization is drawn on the left of Figure S.3.

• Outcome unit covariates:

1. Confounders equal to smooth functions of time: W.j1 is generated by the same Gaussian process

as X.i1, as W.j1 ∼ N(f(t),Σ), where Σt1,t2 = exp(−(t1−t2)2)
2·1002 and f(t) = 3

400
t. Realizations of

this covariate W.i1 for five outcome units is shown on the bottom-left panel of Figure S.2. It is

evident that covariate X.i1 for the interventional units and covariate W.j1 for the outcome units

represent smooth temporal trends that are similar, but different. Therefore, if X.i1 is a predictor
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of the interventional units’ treatment across time, and W.j1 is a predictor of the outcome units’

outcome across time, then the common smooth temporal trend in X.i1 and W.j1 confounds the

exposure-outcome relationship of interest.

2. Location-varying confounders: for units j inside the [0, 0.5] × [0, 0.5] square, we let their co-

variates Wtj2 = Wj2, where Wj2/8 ∼ Beta(9, 1) for all t; for the rest j’s, Wtj2 = Wj2, where

Wj2/8 ∼ Beta(1, 9) for all t. A visualization of this covariate for all outcome units is shown at the

bottom-right panel of Figure S.2. It is evident that the location-varying covariates X.2 and W.2

share spatial trends. Therefore, if the former is a predictor of the interventional units’ treatment,

and the latter of the outcome units’ outcome, then there exists location-varying confounding of

the exposure-outcome relationship.

3. Time-varying confounders: Wtj3/2 ∼Beta(t/100, 2), j = 1, 2, · · · ,M, t = 1, 2, · · · , T. This

variable has an non-smooth temporal trend.

• Network covariates: We generate pP = 1 network covariate, and the network covariate array Pt is

an N ×M matrix. The entries of the matrix are generated independently as Ptij ∼ Beta(t/50, 10),

i = 1, 2, · · · , N, j = 1, 2, · · · ,M, t = 0, 1, · · · , T . Therefore, the network covariates have a

non-smooth temporal trend.

• Bipartite covariates: We consider additional covariates for interventional units based on the weighted

average of neighboring outcome unit covariates, and vice versa. We define the N × M matrix R,

with entries rij = 1 if unit i and j are within distance 0.1, and rij = 0 otherwise. We set Xi4 and

X.i5 to denote the ith interventional unit-related location and time-varying covariates such that:

4. Xi4 =
∑

j rijWj2∑
j rij

, i = 1, 2, · · · , N , and

5. Xti5 =
∑

j rijWtj3∑
j rij

, i = 1, 2, · · · , N, t = 1, 2, · · · , T.

Similarly we set Wj4 and W.j5 to denote the jth outcome-unit-related location and time-varying

covariates. Here, is useful to introduce the matrix Q, whose columns are the normalized version of

the columns of R. Specifically, the (i, j)th entry is equal to qij = rij/
∑

i rij . Then, the covariates

are defined as

4. Wj4 =
∑

i qijXi2, j = 1, 2, · · · , N , and

5. Wtj5 =
∑

i qijXti3, j = 1, 2, · · · , N, t = 1, 2 · · · , T.

The columns of the matrix Q correspond to the vectors q we introduce in Section 3.1 for defining the

interventional and network covariate summaries. One realization of the location-varying covariate
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W.4 for all outcome units and one realization of the non-smooth covariate W..5 are presented on the

left and right panel of Figure S.4.

• For every unit, there is an associated time-varying location-invariant confounder, termed Xti6 =

Wtj6 = Zt, following N (t/200, log(t)/10) everywhere. A realization of this covariate is shown on

the right of Figure S.3.

B.2 The treatment assignment, bipartite network, and outcome

We consider five scenarios regarding the confounding structure. In terms of the treatment assignment,

the five scenarios consider the following generation of treatment vectors over the interventional units

across time.

(a) No confounders:

Ati ∼ Uniform(0, 1),

Gtij ∼ Ber(ρ), where ρ = 0.17,

Ytj = Etj +Wj2 + ϵtj.

(b) Only time-smooth confounders exist:

Ati | Xti1 ∼ Ber(1/(1 + exp(Xti1/1.2))

Gtij ∼ Ber(ρij), where ρij = 1/(2(1 + exp dist(i, j)),

Ytj = Etj +Wtj1 + ϵtj

(c) Only location-varying confounders exist:

Ati | Xi2, Xi4 ∼ Ber(1/(1 + 0.3 exp (Xi2 −Xi4/40)))

Gtij ∼ Ber(ρij), where ρij = 1/(1.7(1 + exp dist(i, j))

Ytj = Etj + 4Wj2 + 4Wj4 + ϵtj

(d) Only time-varying confounders exist:

Ati | Xti3, Xti5, Xti6,Pt ∼ Ber(
1

1 + exp(Xti3/2 +Xti5/2 +Xti6 +
∑

j rijPtij/(10
∑

j rij))
)

Gtij | t ∼ Ber(ρtij), where ρtij = 1/(1 + 0.1 exp sin(πt/1000) + exp dist(i, j))
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Ytj = Etj +Wtj3 +Wtj5 +
∑
i

qijPtij +Wtj6 + ϵtj

(e) All confounders exist:

Ati | Xt,Pt ∼ Ber(ηtij), where

ηtij =
1

1 + 0.45 exp(Xti1/20 +Xi2 +Xti3/100 +Xi4 +Xti5/20 +Xti6/1.5 +
∑

j rijPtij/(10
∑

j rij))

Gtij | t ∼ Ber(ρtij), where ρtij = 1/(1 + 0.1 exp sin(πt/1000) + exp dist(i, j))

Ytj = Etj +Wtj1 + 2 ∗Wj2 +Wtj3 + 0.1 ∗W 2
tj3 + 2 ∗Wj4 +Wtj5 + 1/(1 + exp(Wtj5))+

sin

(∑
i

qijPtij

)
+ 2Wtj6 + ϵtj

C Description for naı̈ve approaches
Implementing three naı̈ve approaches requires a full dataset including exposure status Etj and out-

comes Ytj among all units m1,m2, · · · ,mM and all time points t = 1, 2, · · · , T . While Naı̈ve-all uses

the full dataset, Naı̈ve-t uses only the data from the first outcome unit across time, and Naı̈ve-j uses

the data across all outcome units but only for the first time point.

C.1 Estimator

For Naı̈ve-t, we split the temporal data for the first outcome unit into two groups: the exposed time

periods, t ∈ Te if Ejt = 1, and the unexposed time periods, t ∈ Tu. Similarly, for Naı̈ve-j, we split

the data for the outcome units in the exposed outcome units, j ∈ Je if Ejt = 1, and the unexposed

outcome units, j ∈ Ju otherwise. For Naı̈ve-all, the tuple (t, j) ∈ Se if Ejt = 1 and (t, j) ∈ Su

otherwise. We use the estimators τ̂Naı̈ve−t, τ̂Naı̈ve−j and τ̂Naı̈ve−all as follows:

τ̂Naı̈ve−t =
1

|Te|
∑
t∈Te

Ytj −
1

|Tu|
∑
t∈Tu

Ytj,

τ̂Naı̈ve−j =
1

|Je|
∑
j∈Je

Ytj −
1

|Ju|
∑
j∈Ju

Ytj,

τ̂Naı̈ve−all =
1

|Se|
∑

(t,j)∈Se

Ytj −
1

|Su|
∑

(t,j)∈Su

Ytj.

C.2 Inference

We adopted the classic Wald-type confidence interval construction for two independent samples. De-

note se as the standard deviation of outcomes with index from Te,Je or Se, and su as the standard
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deviation of outcomes with index from Tu,Ju or Su for each naı̈ve approach. The confidence intervals

for Naı̈ve-t, Naı̈ve-j, and Naı̈ve-all are

τ̂Naı̈ve−t ± Zα

√
(|Te| − 1)s2e + (|Tu| − 1)s2u

|Te|+ |Tu| − 2

√
1

|Te|
+

1

|Tu|
,

τ̂Naı̈ve−j ± Zα

√
(|Je| − 1)s2e + (|Ju| − 1)s2u

|Je|+ |Ju| − 2

√
1

|Je|
+

1

|Ju|
,

and

τ̂Naı̈ve−all ± Zα

√
(|Se| − 1)s2e + (|Su| − 1)s2u

|Se|+ |Su| − 2

√
1

|Se|
+

1

|Su|
,

respectively.

D Additional Simulation Results

D.1 Unadjusted matching

We state the methodology for unadjusted matching with time series data given exposure and outcome

values at each time period. For the three matching criteria, 1-1, 1-2, and 1-1/2, we balance time but not

the time-varying confounders. Specifically, we remove constraints (A.4)-(A.5) for 1-1 objective (A),

(B.4)-(B.5) for 1-2 objective (B), and (C.4)-(C.5) for 1-1/2 objective (C).

We evaluate the performance of the unadjusted estimator in the simulations of Section 4. In Ta-

ble S.5 we show the bias, mean squared error, coverage, and proportion of matched exposed time

periods when applying the three unadjusted matching algorithms. Unadjusted matching estimators are

unbiased with nominal coverage in the absence of non-smooth time-varying confounders, even in the

presence of confounding temporal trends, in cases (a), (b) and (c). However, in the scenarios with non-

smooth time-varying confounding, unadjusted estimators will be biased. The proportion of exposed

time points that are matched using unadjusted approaches is only slightly higher than the proportion

for adjusted approaches in some scenarios.

We also demonstrated the performance of unadjusted matching under multiple hypothesis simu-

lations in Section 4.2.2. The results are shown in Table S.6. The unadjusted methods give reliable

inferences for testing the global null in the absence of confounders or in the presence of only time-

smooth confounders. In the presence of non-smooth temporal confounding, the unadjusted estimators’

bias will lead to identifying statistically significant causal effects too often.
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Table S.5: Simulation results of single-unit estimations. Bias, mean squared error (MSE), coverage
of 95% intervals (%), and proportion of exposed time points being matched (%). We show simulation
results for 3 unadjusted matching methods. ‘U’ stands for ‘unadjusted’.

Dense Medium Sparse

Method Bias MSE Cover Prop Bias MSE Cover Prop Bias MSE Cover Prop

(a)1
U1-1 0.00 0.012 96.0 97.8 0.00 0.02 94.8 100 0.00 0.039 95.2 100

U1-1/2 0.00 0.011 94.4 97.8 0.00 0.017 95.0 100 -0.01 0.035 95.0 100
U1-2 -0.01 0.014 94.2 62.3 -0.01 0.016 95.4 90.8 -0.01 0.029 94.0 98.7

(b)
U1-1 0.00 0.019 95.4 62.5 0.00 0.024 93.6 85.1 0.01 0.036 95.6 97.8

U1-1/2 0.00 0.020 94.6 62.5 0.00 0.022 94.6 85.1 0.00 0.033 94.2 97.8
U1-2 0.00 0.023 95.2 41.0 0.00 0.025 93.6 59.9 0.00 0.034 95.4 80.6

(c)
U1-1 0.01 0.019 94.6 99.7 0.01 0.041 93.6 100.0 0.00 0.086 94.4 100.0

U1-1/2 0.00 0.017 95.2 99.7 0.01 0.038 93.6 100.0 -0.01 0.079 94.4 100.0
U1-2 0.00 0.016 94.4 85.5 0.00 0.030 92.2 97.4 0.00 0.064 93.6 99.2

(d)
U1-1 -0.41 0.234 54.4 69.3 -0.37 0.19 60.8 86.1 -0.35 0.224 80.8 99.8

U1-1/2 -0.42 0.232 50.0 69.3 -0.37 0.19 59.8 86.1 -0.36 0.225 75.2 99.8
U1-2 -0.45 0.287 52.8 46.7 -0.41 0.235 59.2 63.0 -0.35 0.209 77.6 91.7

(e)
U1-1 -0.65 0.486 26.4 76.0 -0.59 0.424 33.0 94.5 -0.62 0.491 53.4 99.7

U1-1/2 -0.63 0.458 21.4 76.0 -0.59 0.414 36.8 94.5 -0.60 0.466 49.0 99.7
U1-2 -0.67 0.538 29.4 51.0 -0.64 0.495 32.4 73.7 -0.62 0.487 46.2 91.3

1The scenarios shown in Table S.5 correspond to (a) No confounders, (b) Time-smooth confounders, (c) Location-varying
confounders, (d) Time-varying confounders, and (e) All confounders.

Table S.6: Simulation results for using 3 unadjusted matching methods to test the global null hypoth-
esis for scenarios (b), (d) and (e), and under a medium exposure level. ‘U’ stands for ‘unadjusted’.

Average
estimator mean

Average rate of
p-value ≤ 0.05

Rate of
min(p-value) ≤ 0.05

Rate of FDR
min (adj.p-value) ≤ 0.05

(b)
U1-1 -0.01 0.055 1.000 0.092

U1-1/2 -0.01 0.054 1.000 0.092
U1-2 0.00 0.055 1.000 0.104

(d)
U1-1 -0.39 0.426 1.000 0.998

U1-1/2 -0.39 0.449 1.000 1.000
U1-2 -0.43 0.438 1.000 1.000

(e)
U1-1 -0.63 0.728 1.000 1.000

U1-1/2 -0.63 0.757 1.000 1.000
U1-2 -0.68 0.743 1.000 1.000

D.2 Analysis of tuning parameters

Following the simulation study in Section 4.1.2, we consider two additional choices of the algorith-

mic parameters (δ, δ′, ϵ) per simulation: (0, 0.05, 2) and (2, 0.1, 6). In Table S.7, we compare the

performance of tuning either (δ, ϵ) that correspond to tuning parameters of time, or δ′ that is a tun-

ing parameter for the measured covariates in comparison to the default setting (δ, δ′, ϵ) = (2, 0.05, 6)

(which is shown in Table 2).

Some conclusions from this comparison are discussed in Section 4.2.3. Here, we also point out
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that, even though Matching 1-2 performed best under sparse scenarios in Table 2, when (δ, ϵ) are

small, Matching 1-2 is no longer best. That is because the tight constraints exclude many possible 1-2

pairs, and the proportion of exposed time points that are matched is almost half of that of 1-1 or 1-1/2

matching strategies, resulting in large variability for the matching 1-2 estimator.

D.3 Modification of matching methods: Covariate balancing within matches

In Section 4.1.2 we observe that coverage of our 95% intervals is sometimes larger than the nominal

level. Here, we illustrate that this issue of over-coverage is alleviated when covariate balance is im-

posed for every match, supporting the discussion in Section 3.3. We extend the matching algorithms

in (A), (B) and (C) to include additional constraints. For simplicity, we only show the constraints

for the outcome unit covariates, but similar constraints are adopted for the interventional and network

time-varying covariates as well. Given a small value δ′′, for matching 1-1 in (A) we impose

|atetu(Wte −Wtu)| ≤ 1pW · δ′′, ∀te ∈ Te, ∀tu ∈ Tu,

and similarly for Matching 1-2 in (B) we impose∣∣∣∣atetu1 tu2 (Wte −
Wtc1 +Wtc2

2

)∣∣∣∣ ≤ 1pW · δ′′, ∀te ∈ Te, ∀tu1 , tu2 ∈ Tu.

For Matching 1-1/2 in (C) we impose both constraints. Here, we refer to these matching algorithms

and the corresponding estimators as extended matching algorithms and estimators. We compare them

to the algorithms and estimators introduced in Section 3 (which impose only constraints on the overall

matched populations, and not within each match), which we refer to here as the standard algorithms

and estimators.

We evaluated the performance of these extended matching estimators against the standard matching

estimators under confounding scenario (d) with time-varying confounder and medium sparsity level.

We set δ′′ = 0.25, assuming the covariates have been standardized as discussed in Section 4.1.2. We

set the remaining tuning parameters equal to the values (δ, δ′, ϵ) = (2, 0.05, 6).

In Figure S.5, we see that the three extended matching estimators are close to unbiased for the true

causal effect (which is equal to 1). Any residual bias is due to residual covariate imbalance. The bias

of the three matching estimators based on the extended algorithms is −0.08 for Matching 1-1, −0.10

for Matching 1-1/2, and −0.09 for Matching 1/2. Since bias can affect coverage rates, we compare

coverage of 95% intervals of the extended matching estimators, with the results of the standard es-

timators under tuning parameters (δ, δ′, ϵ) = (2, 0.1, 6) which show similar bias (see Table S.7, bias
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Table S.7: Simulation results of single-unit estimations under different tuning parameters.

Dense Medium Sparse

Method Bias MSE Cover Prop Bias MSE Cover Prop Bias MSE Cover Prop

(a) No confounders

1-1
(1)1 0.00 0.013 97.2 87.2 -0.01 0.021 93.8 98.3 0.00 0.039 95.0 99.9
(2) 0.00 0.012 95.0 97.8 -0.01 0.020 95.4 100.0 -0.01 0.040 95.6 100.0
(3) -0.01 0.014 94.0 96.3 -0.01 0.019 95.6 100.0 -0.01 0.040 95.8 100.0

1-1/2
(1) 0.00 0.013 94.4 87.2 0.00 0.019 93.4 98.3 -0.01 0.035 94.8 99.9
(2) 0.00 0.011 95.8 97.8 -0.01 0.017 96.2 100.0 -0.01 0.031 94.6 100.0
(3) -0.01 0.014 94.6 96.3 0.00 0.018 95.6 100.0 -0.01 0.034 94.2 100.0

1-2
(1) 0.00 0.021 94.2 40.9 0.00 0.024 94.4 64.0 -0.01 0.037 93.2 82.0
(2) 0.00 0.013 97.2 62.3 -0.01 0.016 95.4 90.8 -0.01 0.028 95.6 98.7
(3) -0.01 0.017 95.6 61.4 -0.01 0.016 96.0 90.8 -0.01 0.029 95.0 98.7

(b) Time-smooth confounders

1-1
(1) 0.01 0.021 94.4 58.4 0.01 0.025 96.0 78.7 0.01 0.039 95.8 93.2
(2) 0.00 0.018 96.0 62.5 0.00 0.024 92.8 85.1 0.01 0.037 94.8 97.8
(3) -0.01 0.021 94.4 63.7 0.00 0.024 93.2 85.1 0.00 0.037 94.6 97.8

1-1/2
(1) 0.00 0.020 94.4 58.4 0.01 0.025 95.8 78.7 0.01 0.036 95.8 93.2
(2) 0.00 0.018 94.8 62.5 0.00 0.022 94.2 85.1 0.01 0.035 93.8 97.8
(3) -0.01 0.020 95.8 63.7 -0.01 0.023 94.4 85.1 0.01 0.034 94.4 97.8

1-2
(1) 0.01 0.034 93.6 28.5 0.01 0.036 93.8 43.0 0.02 0.048 96.2 59.6
(2) 0.00 0.023 94.0 41.0 0.00 0.024 95.0 59.9 0.01 0.034 94.8 80.6
(3) -0.01 0.025 94.8 41.7 0.00 0.023 95.2 59.9 0.00 0.034 94.2 80.6

(c) Location-varying confounders

1-1
(1) 0.00 0.023 93.0 96.3 0.00 0.040 94.2 99.6 0.01 0.082 93.0 99.8
(2) 0.01 0.020 94.4 99.7 0.00 0.037 95.0 100.0 -0.01 0.080 94.8 100.0
(3) 0.00 0.021 95.8 97.6 0.00 0.037 95.6 100.0 -0.01 0.081 95.0 100.0

1-1/2
(1) 0.00 0.021 91.8 96.3 0.01 0.037 93.8 99.6 0.00 0.068 94.2 99.9
(2) 0.01 0.017 95.2 99.7 0.01 0.033 94.2 100.0 0.00 0.073 92.6 100.0
(3) 0.00 0.020 93.8 97.6 0.01 0.033 94.8 100.0 0.00 0.071 93.6 100.0

1-2
(1) 0.01 0.025 94.6 59.7 0.01 0.037 94.4 79.1 0.00 0.063 94.6 88.6
(2) 0.00 0.016 94.4 85.5 0.00 0.032 94.0 97.4 0.00 0.071 92.0 99.1
(3) -0.01 0.020 93.4 82.5 0.00 0.030 95.2 97.4 0.00 0.068 93.2 99.1

(d) Time-varying confounders

1-1
(1) -0.04 0.023 99.2 59.2 -0.04 0.027 98.8 74.8 -0.04 0.066 96.6 92.5
(2) -0.05 0.023 98.0 67.6 -0.05 0.024 98.4 85.0 -0.03 0.062 95.2 99.7
(3) -0.09 0.038 96.4 69.5 -0.09 0.037 95.2 85.8 -0.06 0.070 93.4 99.8

1-1/2
(1) -0.04 0.024 99.4 59.2 -0.05 0.028 98.2 74.8 -0.04 0.067 97.0 92.7
(2) -0.05 0.022 98.4 67.6 -0.05 0.024 98.2 85.0 -0.04 0.054 96.6 99.7
(3) -0.10 0.040 96.0 69.5 -0.09 0.036 96.2 85.8 -0.07 0.062 94.2 99.8

1-2
(1) -0.03 0.037 99.0 27.3 -0.04 0.040 99.0 38.3 -0.02 0.079 97.4 57.4
(2) -0.04 0.026 98.8 43.5 -0.04 0.025 97.6 59.4 -0.04 0.053 96.0 87.5
(3) -0.10 0.040 97.8 45.4 -0.08 0.039 97.6 61.0 -0.08 0.065 94.0 89.2

(e) All confounders

1-1
(1) -0.06 0.027 98.8 66.2 -0.05 0.031 99.0 85.2 -0.04 0.049 98.8 93.9
(2) -0.06 0.027 98.4 75.0 -0.06 0.033 98.0 94.1 -0.03 0.045 98.8 99.6
(3) -0.13 0.047 92.2 75.9 -0.12 0.047 94.2 94.5 -0.09 0.056 97.2 99.7

1-1/2
(1) -0.06 0.026 98.8 66.2 -0.05 0.031 99.4 85.2 -0.04 0.046 99.4 94.1
(2) -0.07 0.028 98.0 75.0 -0.06 0.032 97.2 94.1 -0.04 0.041 98.4 99.6
(3) -0.13 0.049 91.6 75.9 -0.12 0.048 94.4 94.5 -0.10 0.054 96.2 99.7

1-2
(1) -0.06 0.041 99.6 31.4 -0.05 0.043 99.2 47.6 -0.04 0.053 99.4 60.2
(2) -0.07 0.028 99.2 48.9 -0.06 0.032 98.6 71.0 -0.04 0.042 97.8 88.3
(3) -0.13 0.051 96.6 50.1 -0.12 0.050 96.6 72.5 -0.10 0.057 96.2 89.6

1Tuning parameters: (1) strict: (δ, δ′, ϵ) = (0, 0.05, 2), (2) medium: (δ, δ′, ϵ) = (2, 0.05, 6) (the results in Table 2
correspond to this choice of tuning parameters), (3) loose: (δ, δ′, ϵ) = (2, 0.1, 6).
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Figure S.5: Boxplots of estimated causal effects over 500 data sets based on the extended estimators.

−0.09 for Matching 1-1, −0.09 for Matching 1-1/2, and −0.08 for Matching 1-2). The coverage rate

for the extended 1-1, 1-1/2, and 1/2 estimators is 95.4%, 93.0%, and 92.8%, respectively, somewhat

lower than the corresponding coverage rates of the standard 1-1, 1-1/2, and 1/2 matching estimators

(included in Table S.7) which are equal to 95.2%, 96.2% and 97.6%, respectively. We suspect that the

extended estimators have coverage rate below 95% due to the minor amount of bias, and we expect that

they will have closer to nominal coverage compared to the standard matching estimators in unbiased

scenarios.

However, even though inference might be closer to the nominal level (rather than being conserva-

tive) when the extended estimators are employed, they might suffer due to small number of matches

depending on the value of δ′′. Even with δ′′ = 0.25, the proportion of matched exposed time periods

decreases significantly (compared to the algorithms that do not impose constraints within each match)

to 19.7%, 30.5%, and 19.9% for Extended 1-1, Extended 1-1/2, and Extended 1-2, respectively (com-

pared to 85.8%, 85.8% and 61% for standard 1-1, 1-1/2, and 1/2 matching, respectively). We can

conclude that the extending matching that incorporates the within-match adjustment has the benefit of

coverage that is closer to the nominal level, but suffers from a lower proportion of matched exposed

time periods, which might lead to higher overall uncertainty.
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Figure S.6: Boxplots of causal effect estimates for the naı̈ve methods, the matching estimators without
adjustment for measured covariates (discussed in Supplement D.1), and the matching estimators with
balance constraints for measured covariates. This scenario corresponds to the case with exposure-
outcome confounding due to network-outcome dependence on location-varying information.

D.4 Network-outcome confounding can lead to exposure-outcome confounding

We illustrate that confounding of the exposure-outcome relationship can arise due to confounding

of the network-outcome relationship, even in the absence of confounding between the interventional

units’ treatment and the outcome. To do so, we revisit the no-confounding scenario (a) shown Table 1

and modify the generation of the network to impose network-outcome confounding. Specifically, we

generate the entries of G independently as Gtij ∼ Ber(ρij), for ρij = 1/(1.7(1 + exp dist(i, j)).

Under this modification, the network G and the outcomes are both associated with location-varying

information. We consider the medium sparsity level.

Estimated effects are shown in Figure S.6. We see that Naı̈ve-all and Naı̈ve-j are both biased,

illustrating that the network-outcome dependence on location-varying information has introduced con-

founding of the exposure-outcome relationship. We also see that the matching estimators are unbiased,

whether they are adjusting for measured covariates (denoted as 1-1, 1-1/2, and 1-2) or not (denoted as

U1-1, U1-1/2, and U1-2).
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D.5 Simulations under heterogeneous treatment effects

We performed a simulation where exposure effects are no longer homogeneous over time for an in-

dividual outcome unit. We define three new quantities, termed ≈
τ 1−1
j (1, 0),

≈
τ
1−1/2
j (1, 0) and ≈

τ 1−2
j (1, 0),

as the average difference in the potential outcomes between exposures 0 and 1 over the exposed time

periods that are matched according to 1-1, 1-1/2, and 1-2, respectively. For example, ≈
τ 1−1
j (1, 0) can be

written as

≈
τ 1−1
j (1, 0) =

1∑
t: matched in 1−1 I(Etj = 1)

∑
t: matched in 1−1

(Ytj(1)− Ytj(0))I(Etj = 1).

These quantities resemble the estimand τ̃j(1, 0) defined in Section 2, but they average over the matched

exposed time periods only. For ease of notation, we denote them as ≈
τ 1−1,

≈
τ 1−1/2 and ≈

τ 1−2.

The data generating models follow the scenarios (b) and (d) with medium exposure, where we alter

the outcome model to specify heterogeneous treatment effects. Specifically, we generate outcomes

according to

Ytj = (1 + ϵ′tj)Etj + 0.005(400− t)Etj +Wtj3 +Wtj5 +
∑
i

qijPtij +Wtj6 + ϵtj,

where ϵ′tj are generated independently from N(0, 1). We simulate 500 data sets and consider the esti-

mation of effects for the first outcome unit.

We compare the matching approaches to Naı̈ve-t. We exclude Naı̈ve-j and Naı̈ve-all from simu-

lations under heterogeneity since the estimands they target average across units, whereas Naı̈ve-t and

the matching estimators target unit-specific effects that average across time.

The bias, MSE, Coverage and proportion of exposed units that are matched are shown in Table S.8.

We evaluate the performance of the three matching estimators and Naı̈ve-t for estimating the average

effect over all time points τ , and the average effect over all exposed time points τ̃ . In the presence of

heterogeneous effects across time, all of the estimators are biased for the effect over all time periods,

τ . However, the matching estimators perform relatively well for estimating the effect over the exposed

time periods, τ̃ , and substantially better than the Naı̈ve-t approach that suffers from confounding bias.

Particularly, Matching 1-1 and 1-1/2 which match 85% of the exposed time points are close to unbiased

with appropriate coverage of confidence intervals.

We also evaluate the performance of each matching estimator against the causal effect over the set

of exposed time periods that are in fact matched, in that we evaluate the 1-1 matching estimator for

estimating ≈
τ1−1, the 1-1/2 matching estimator for estimating ≈

τ1−1/2 and the 1-2 matching estimator for
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Table S.8: Simulation results under heterogeneous effects for a single outcome unit. Bias, mean
squared error (MSE), coverage of 95% intervals (%) of the Naı̈ve-t method and matching methods for
estimating the causal effect over all time periods, over the exposed time periods, and over the matched
exposed time periods. The proportion of exposed time periods that are matched on average when
employing each matching method is reported once.

Estimand Method Bias MSE Coverage Proportion

(b) Time-smooth confounders

τ

Naı̈ve-t -0.62 0.45 29.2 -
1-1 0.41 0.21 58.6 85.1

1-1/2 0.41 0.21 56.4 85.1
1-2 0.30 0.14 83.0 59.9

τ̃

Naı̈ve-t -1.09 1.26 1.4
1-1 -0.07 0.04 97.6

1-1/2 -0.06 0.03 97.0
1-2 -0.16 0.07 94.6

≈
τ1−1

Naı̈ve-t -1.02 1.12 2.0
1-1 0.00 0.03 98.2

≈
τ1−2

Naı̈ve-t -1.03 1.12 2.0
1-2 0.01 0.03 98.8

≈
τ1−1/2

Naı̈ve-t -0.92 0.92 4.8
1-1/2 0.01 0.03 99.4

(d) Time-varying confounders

τ

Naı̈ve-t -0.85 0.79 4.0 -
1-1 0.25 0.10 83.0 85.1

1-1/2 0.25 0.10 84.4 85.1
1-2 0.13 0.06 96.2 59.4

τ̃

Naı̈ve-t -1.22 1.55 0.0
1-1 -0.12 0.04 97.0

1-1/2 -0.12 0.04 96.8
1-2 -0.24 0.09 92.8

≈
τ1−1

Naı̈ve-t -1.14 1.35 0.4
1-1 -0.03 0.03 99.2

≈
τ1−2

Naı̈ve-t -1.14 1.35 0.4
1-2 -0.04 0.02 98.8

≈
τ1−1/2

Naı̈ve-t -1.01 1.10 1.0
1-1/2 -0.03 0.02 99.6

estimating ≈
τ1−2. When compared against the effect over the matched exposed population, the estima-

tors are unbiased with appropriate coverage. This suggests that even though the effect of exposure is

not constant at each time point, matching approaches can still serve as a useful tool for inferring the

average effect of the exposure over the population that was in fact matched.
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Table S.9: Simulation results of single-unit estimation in the presence of temporal correlation ρ =
0.2, 0.4, 0.6 and 0.8 in the random error term. in the outcome variable. Coverage of 95% intervals (%)
of matching methods.

ρ 1-1 1-1/2 1-2

0.2 96.6 96.0 95.8
0.4 96.2 96.0 96.0
0.6 96.6 94.8 94.6
0.8 94.2 93.2 94.4

D.6 The impact of temporal correlation in the outcome variable on inference

To analyze the impact of temporal correlation in the outcome variable on coverage, we alter scenario

(a) under medium exposure such that the outcome error term ϵ is equal to ϵtj = ρϵ(t−1)j +
√
1− ρ2et,

where et ∼ N(0, 1), and ρ is a tuning parameter adjusting the amount of autocorrelation of the error

term. We simulate 500 data sets under different levels of autocorrelation, ρ = 0.2, 0.4, 0.6 and 0.8,

and record the coverage of the three matching estimators. The results are shown in Table S.9. The

correlation in the outcome across time has minimal impact on the coverage of the confidence intervals,

which is close to 95% across all scenarios, even when auto-correlation in the error term is very high

(ρ = 0.8).

E Additional study information

E.1 Information on data availability and creation

In our study, the interventional units correspond to the different locations of forested areas in North

America, each of which might experience a wildfire or not. Hazardous smoke produced by wild-

fires can travel long distances, and affect population exposure and behavior across different areas.

The National Oceanic and Atmospheric Administration’s Hazard Mapping System (HMS) combines

data from polar and geostationary satellites in real time, enabling experts to accurately identify and

track the dispersion of smoke. The HMS data can be found at https://www.ospo.noaa.gov/

Products/land/hms.html, which report daily smoke exposure across the United States as light,

medium or high based on smoke thickness.

We focus on three outcome units: San Francisco, San Jose and East Bay in northern California,

which might experience exposure to smoke from wildfires or not, based on random patterns of smoke

transport and dispersion. Using HMS, we consider an area as exposed if the smoke thickness is light

or higher. During most of the time periods under study (January 2021 to September 2023), all three
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regions are either simultaneously exposed or unexposed. Overall, the numbers of wildfire-exposed

days are 147 for San Francisco, 147 for East Bay and 137 for San Jose. The scenario in Figure 1 where

two of the three regions are exposed is rare, but we include it for illustration purposes.

The outcome of interest corresponds to the total daily amount of bicycle riding time using Lyft’s

Bay Wheels bikeshare program, which records daily bikeshare usage since 2017 with more than 450

bikeshare stations. This database is available for public use at https://www.lyft.com/bikes/

bay-wheels/system-data. We can obtain from it that more than 97% of rides last less than 1

hour, meaning it is unlikely to rent a bike overnight, and rides begin and end within the same area.

Therefore, it is reasonable to assume there is little spillover effect across time or outcome units.

The time-varying covariates are regional temperature, dew, humidity, wind speed and wind direc-

tion among three bike locations, which are retrieved at https://www.ncei.noaa.gov/cdo-web/

datasets.

Due to the temperature and drought season, there are more wildfires and gusty winds in late sum-

mer than in the other seasons. As a result, the exposed time periods and the corresponding matched

unexposed ones, concentrate around the late summer and fall (see Supplement E.2). Therefore, the

matching algorithms use information on exposed and unexposed time periods during the summer and

fall. This is in contrast to the naı̈ve approach, which uses data on all seasons, including the winter

months where both exposure and bike activity are expected to be lower.

E.2 Illustrations of matched data for San Francisco

Our data set includes information from January 2021 until September 2023. Most exposed time peri-

ods, and as a result most matches, occur during the summer and fall months. As an illustration, the

exposed and unexposed time periods for a subset of our time window and for San Francisco are shown

in Figure S.7, with the red color denoting whether the time period was used in a match according to

Matching 1-1, Matching 1-1/2, or Matching 1-2. Under ϵ = 6, Matching 1-1 and Matching 1-1/2 have

similar but not identical matching patterns, while Matching 1-2 matches fewer exposed time periods.

E.3 Results under alternative definition of exposure

As discussed in Supplement E.1, the HMS categorizes smoke exposure as no exposure, light, medium,

or high exposure. In our analysis of Section 5, we considered an area at a given time period as exposed

if the HMS classification was light or higher, and unexposed otherwise. Here, we evaluate the sensi-

tivity of our conclusions when an area is considered exposed under medium or high smoke exposure,

and unexposed under no smoke exposure or light smoke. Under this definition, out of the 1003 total
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Figure S.7: Exposure and matching information for Matching 1-1, Matching 1-1/2, and Matching 1-2
for San Francisco during the period from June 1, 2021, to October 15, 2021. The hollow dots are time
periods that are not matched while the red dots correspond to matched time periods.

number of days, San Francisco was exposed during 39 days, the East Bay during 40 days, and San

Jose during 37 days.

Table S.10 shows the causal effect estimates under this alternative specification of exposure. We

find that all estimates are negative, indicating that smoke exposure leads to a reduction in bikeshare

hours for all three regions. Therefore, these results agree with the ones in Table 4. The effect estimates

when categorizing a time period as exposed under medium or high smoke (Table S.10) are similar or

larger in magnitude compared to the effect estimates when categorizing a time period as exposed under

light, medium or high smoke (Table 4). Since, here, a time period is classified as exposed under heavier

smoke conditions, we believe that this comparison might be because heavier smoke affects bikeshare

hours more heavily than lighter smoke exposure. However, these effect estimates are not statistically

significant. We believe that this is largely because of the small number of matches (ranging from 24 to

36), that is partially explained by the small number of days with medium or high smoke exposure.
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Table S.10: The effect of wildfire smoke on bikeshare hours in San Francisco, East Bay, and San Jose
for Naı̈ve-t and the matching estimators. For each region, the three columns correspond to the estimate,
p-value, and number of matches. In this analysis, an area is considered exposed at a given time period
if it is classified to have medium or high smoke exposure according to HMS, and unexposed if it is
classified to have no smoke or light smoke exposure.

San Francisco East Bay San Jose

Naı̈ve-t 0.752 (0.983) 0.105 (0.983) 0.118 (0.995)

Maching 1-1 -0.537 (0.152) 35 -0.050 (0.166) 36 -0.086 (0.093) 33

Matching 1-1/2 -0.615 (0.078) 35 -0.085 (0.103) 36 -0.048 (0.170) 33

Matching 1-2 -0.437 (0.199) 26 -0.161 (0.044) 27 -0.082 (0.094) 24

A similar analysis that considers time periods to be exposed under heavy smoke exposure only

would not be feasible in our data set. That is because the number of days with heavy smoke thickness

was small across our time window. Specifically, in the three areas there are approximately 17 days of

heavy exposure, 22 days of medium exposure, 70 days of light exposure, and more than 800 days of

no exposure. Therefore, analyzing this exposure as categorical would be largely infeasible.
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