

Covariate-informed latent interaction models Addressing geographic & taxonomic bias in predicting bird-plant interactions

Georgia Papadogeorgou

with Carolina Bello, Otso Ovaskainen & David Dunson

Motivation

Measured networks are often

→ incomplete

we observed some interactions and recorded them

 \rightsquigarrow measured with error

incomplete + recorded interactions might not be truly present

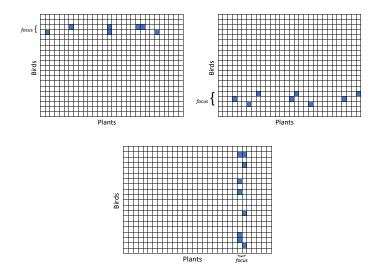
 \rightsquigarrow have access to only a subset of nodes

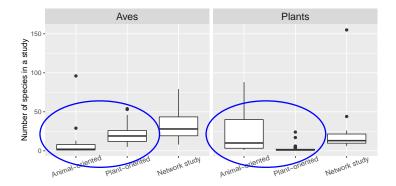
Interest:

 \rightsquigarrow Infer the true interaction network from limited measured networks \rightsquigarrow Understand the covariates that drive node interaction

• Not necessarily a problem:

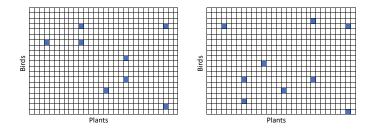
 \rightsquigarrow If our inferential interest is the population we followed

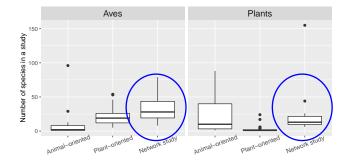

• Could be a problem:


 \rightsquigarrow If the population we want to learn about is dissimilar than the one followed

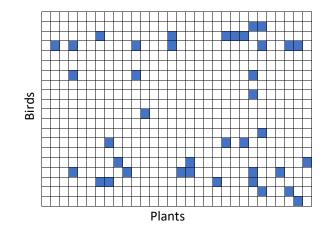
 \rightsquigarrow measured interactions are not representative of interactions among target population

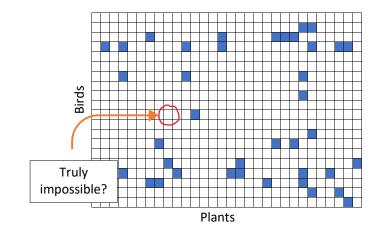
Measured networks of species interactivity are incomplete


- Measured networks of species interactivity are incomplete
- Individual studies on species' interactivity often focus on specific species



Number of unique species by study type


- Measured networks of species interactivity are incomplete
- Individual studies on species' interactivity often focus on specific species
- Network studies are most useful for studying species interactions



- Measured networks of species interactivity are incomplete
- Individual studies on species' interactivity often focus on specific species
- Network studies are most useful for studying species interactions
- All studies focus on a specific geographic area

- Measured networks of species interactivity are incomplete
- Individual studies on species' interactivity often focus on specific species
- Network studies are most useful for studying species interactions
- All studies focus on a specific geographic area
- Under or over-representation of species
- Combined network is taxonomically and geographically biased

- Measured networks of species interactivity are incomplete
- Individual studies on species' interactivity often focus on specific species
- Network studies are most useful for studying species interactions
- All studies focus on a specific geographic area
- Under or over-representation of species
- Combined network is taxonomically and geographically biased

Goals:

- **1** Understand species interactivity while "adjusting" for these biases
- 2 Learn which covariates are most important in driving species interactions & detectability

Motivation

- The Atlantic Forest currently includes only 12% of its original biome
- Plants rely on frugivore populations for seed dispersal
- Reductions in frugivore populations lead to disruptions in the regeneration of ecosystems
- Climate change, reductions in natural habitats, deforestation
- How will biological communities respond?

Goals:

- Understand species interactivity
- Would a given bird consume the seed of a given plant, if given the opportunity?
- What are the drivers of species interactions?

Our setup

• S = 85 individual studies

 \sim 19 animal-oriented, 45 plant-oriented, and 19 network studies

- bird $i = 1, 2, \dots, n_B$ $(n_B = 232)$
- plant $j = 1, 2, ..., n_P$ ($n_P = 511$)
- $A_{ijs} = 1$ or 0: recorded or unrecorded interaction in study s
- X_i, W_j : covariate information

Our setup

• S = 85 individual studies

 \sim 19 animal-oriented, 45 plant-oriented, and 19 network studies

- bird $i = 1, 2, \dots, n_B$ $(n_B = 232)$
- plant $j = 1, 2, ..., n_P$ ($n_P = 511$)
- $A_{ijs} = 1$ or 0: recorded or unrecorded interaction in study s
- X_i, W_j : covariate information

Goals (in statistical terms):

- Learn bipartite network of possible interactions
 ~ L_{ij} = 1 if interaction is possible, 0 otherwise
 ~ unrecorded interactions are not necessarily impossible
 ~ recorded networks are prone to biases
- Study covariate importance in latent network models

 \blacksquare Elucidate likelihood for $({\pmb{A}}, {\pmb{X}}, {\pmb{W}})$

- Elucidate likelihood for (A, X, W)
- The measured covariates might not include all relevant information Introduce latent factors:
 - $U_i = (U_{i1}, \dots, U_{iH})^T$ for bird species $V_j = (V_{j1}, \dots, V_{jH})^T$ for plant species
 - → Representation of species covariate information
 → Arbitrarily close to species' measured covariates

- Elucidate likelihood for (A, X, W)
- For a measured network to have recorded a given interaction, all of the following need to happen:
 - species co-occur
 - researchers are interested in the pair of species
 - species truly interact
 - an interaction was detected

• Elucidate likelihood for (A, X, W)

• Species occurrence: $O_{ijs} = 1$ if i, j both occur at the study site

 \rightsquigarrow important for addressing geographical bias \rightsquigarrow fixed here

• Elucidate likelihood for (A, X, W)

• Species occurrence: $O_{ijs} = 1$ if i, j both occur at the study site

 \rightsquigarrow important for addressing geographical bias \rightsquigarrow fixed here

• Study focus: $F_{ijs} = 1$ if ij-pair includes focal species

 \rightsquigarrow important for addressing taxonomical bias

• Elucidate likelihood for (A, X, W)

• Species occurrence: $O_{ijs} = 1$ if i, j both occur at the study site

 \rightsquigarrow important for addressing geographical bias \rightsquigarrow fixed here

• Study focus: $F_{ijs} = 1$ if ij-pair includes focal species

 \rightsquigarrow important for addressing taxonomical bias

True interactions: $L_{ijs} = 1$ if ij-pair is possible to interact

• Elucidate likelihood for (A, X, W)

• Species occurrence: $O_{ijs} = 1$ if i, j both occur at the study site

 \rightsquigarrow important for addressing geographical bias \rightsquigarrow fixed here

■ Study focus: $F_{ijs} = 1$ if *ij*-pair includes focal species ~ important for addressing taxonomical bias

- **True interactions:** $L_{ijs} = 1$ if ij-pair is possible to interact
- **Species'** detectability: p_i, q_j for bird *i* and plant *j*

Focus on

$$P(\mathbf{A} = \mathbf{a} \mid \mathbf{L}, \mathbf{F}, \mathbf{O}, \{p\}, \{q\}, \{\mathbf{U}\}, \{\mathbf{V}\}, \{\mathbf{X}\}, \{\mathbf{W}\})$$

Focus on

$$P(\boldsymbol{A} = \boldsymbol{a} \mid \boldsymbol{L}, \boldsymbol{F}, \boldsymbol{O}, \{p\}, \{q\}, \{\boldsymbol{U}\}, \{\boldsymbol{V}\}, \{\boldsymbol{X}\}, \{\boldsymbol{W}\})$$

Dependencies across measured networks

- \rightarrow geographic proximity (O_{ijs})
- \rightsquigarrow study focus (F_{ijs})
- \rightsquigarrow truly impossible interactions (L_{ij})
- \rightsquigarrow species detectability, $p_i, q_j \in (0, 1)$

Focus on

$$P(\mathbf{A} = \mathbf{a} \mid \mathbf{L}, \mathbf{F}, \mathbf{O}, \{p\}, \{q\}, \{\mathbf{U}\}, \{\mathbf{V}\}, \{\mathbf{X}\}, \{\mathbf{W}\})$$

Dependencies across measured networks

$$\rightarrow$$
 geographic proximity (O_{ijs})

- \rightsquigarrow study focus (F_{ijs})
- \sim truly impossible interactions (L_{ij})
- \rightsquigarrow species detectability, $p_i, q_j \in (0, 1)$
- We can write it as

$$\prod_{i,j,s} P\left(A_{ijs} = a_{ijs} \mid L_{ij}, F_{ijs}, O_{ijs}, p_i, q_j\right)$$

Focus on

$$P(\mathbf{A} = \mathbf{a} \mid \mathbf{L}, \mathbf{F}, \mathbf{O}, \{p\}, \{q\}, \{\mathbf{U}\}, \{\mathbf{V}\}, \{\mathbf{X}\}, \{\mathbf{W}\})$$

Dependencies across measured networks

- \rightsquigarrow geographic proximity (O_{ijs})
- \rightsquigarrow study focus (F_{ijs})

 \sim truly impossible interactions (L_{ij})

 \rightsquigarrow species detectability, $p_i, q_j \in (0, 1)$

We can write it as

$$\prod_{i,j,s} P\left(A_{ijs} = a_{ijs} \mid L_{ij}, F_{ijs}, O_{ijs}, p_i, q_j\right)$$

and specify:

$$P(A_{ijs} = 1 \mid L_{ij} = l, F_{ijs} = f, O_{ijs} = o, p_i, q_j) = \begin{cases} 0, & \text{if } lfo = 0\\ p_i q_j, & \text{if } lfo = 1 \end{cases}$$

Focus on

$$P(\boldsymbol{A} = \boldsymbol{a} \mid \boldsymbol{L}, \boldsymbol{F}, \boldsymbol{O}, \{p\}, \{q\}, \{\boldsymbol{U}\}, \{\boldsymbol{V}\}, \{\boldsymbol{X}\}, \{\boldsymbol{W}\})$$

Dependencies across measured networks

- \rightsquigarrow geographic proximity (O_{ijs})
- \rightsquigarrow study focus (F_{ijs})
- \sim truly impossible interactions (L_{ij})
- \rightsquigarrow species detectability, $p_i, q_j \in (0, 1)$
- We can write it as

$$\prod_{i,j,s} P\left(A_{ijs} = a_{ijs} \mid L_{ij}, F_{ijs}, O_{ijs}, p_i, q_j\right)$$

$$=\prod_{\substack{i,j,s\\F_{ijs}O_{ijs}L_{ij}=1}} (p_i q_j)^{a_{ijs}} (1-p_i q_j)^{1-a_{ijs}} \prod_{\substack{i,j,s\\F_{ijs}O_{ijs}L_{ij}=0}} I(a_{ijs}=0)$$

Need to specify joint distribution on unobserved quantities:

 ${\pmb L}, \{{\pmb U}\}, \{{\pmb V}\}, \{p\}, \{q\}$

• Still need distribution on measured covariates $\{X\}, \{W\}!$

Need to specify joint distribution on unobserved quantities:

 ${\pmb L}, \{{\pmb U}\}, \{{\pmb V}\}, \{p\}, \{q\}$

• Still need distribution on measured covariates $\{X\}, \{W\}!$

→ Recorded interactions depend on species' characteristics:

logit
$$P(L_{ij} = 1 | \mathbf{X}_i, \mathbf{U}_i, \mathbf{W}_j, \mathbf{V}_j) = \lambda_0 + \sum_{h=1}^{H} \lambda_h U_{ih} V_{jh}$$

Need to specify joint distribution on unobserved quantities:

 $L, \{U\}, \{V\}, \{p\}, \{q\}$

Still need distribution on measured covariates $\{X\}, \{W\}!$

→ Recorded interactions depend on species' characteristics:

logit
$$P(L_{ij} = 1 | \mathbf{X}_i, \mathbf{U}_i, \mathbf{W}_j, \mathbf{V}_j) = \lambda_0 + \sum_{h=1}^{H} \lambda_h U_{ih} V_{jh}$$

→ Species' detectability depends on species' characteristics:

$$E[\operatorname{logit}(p_i) | U_i, X_i] = \delta_0 + U_i^T \delta$$
$$E[\operatorname{logit}(q_j) | V_j, W_j] = \zeta_0 + V_j^T \zeta$$

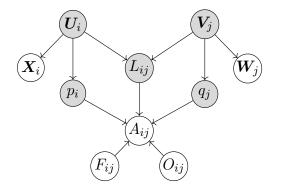
Need to specify joint distribution on unobserved quantities:

 $\pmb{L}, \{\pmb{U}\}, \{\pmb{V}\}, \{p\}, \{q\}$

■ Still need distribution on measured covariates {X}, {W}!

→ Recorded interactions depend on species' characteristics:

logit
$$P(L_{ij} = 1 | \mathbf{X}_i, \mathbf{U}_i, \mathbf{W}_j, \mathbf{V}_j) = \lambda_0 + \sum_{h=1}^H \lambda_h U_{ih} V_{jh}$$


→ Species' detectability depends on species' characteristics:

$$E[\operatorname{logit}(p_i) \mid U_i, X_i] = \delta_0 + U_i^T \delta$$
$$E[\operatorname{logit}(q_j) \mid V_j, W_j] = \zeta_0 + V_j^T \zeta$$

 \rightsquigarrow Latent factors are "close" enough to measured covariates

$$f_m^{-1}(E(X_{im} | U_i)) = \beta_{m0} + U'_i \beta_m, \ m = 1, 2, \dots, p_B, \text{ and}$$
$$g_l^{-1}(E(W_{jl} | V_j)) = \gamma_{l0} + V'_j \gamma_l, \ l = 1, 2, \dots, p_P$$

Our approach (schematically)

Our Approach (prior distributions)

•
$$U_{.h} \sim \mathcal{N}(\mathbf{0}, \Sigma_U)$$
, and $V_{.h} \sim \mathcal{N}(\mathbf{0}, \Sigma_V)$

 \rightsquigarrow independently across h

 $\rightsquigarrow \Sigma_U, \Sigma_V$ phylogenetically structured across species

Sirio Legramanti, Daniele Durante, and David B. Dunson. Bayesian cumulative shrinkage for infinite factorizations. Biometrika, 107(3): 745â752, 2020

Our Approach (prior distributions)

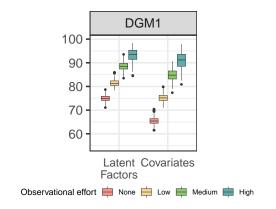
•
$$U_{.h} \sim \mathcal{N}(\mathbf{0}, \Sigma_U)$$
, and $V_{.h} \sim \mathcal{N}(\mathbf{0}, \Sigma_V)$

 \sim independently across h $\sim \Sigma_U, \Sigma_V$ phylogenetically structured across species

Model coefficients: β_{mh}|τ^β_{mh}, θ_h ~ N(0, τ^β_{mh}θ_h) similarly for others
 θ_h: The increasing shrinkage prior of Legramanti et al. (2020)
 ~ Increasingly penalizes coefficients with larger h

$$au^{eta}_{mh}$$
: Coefficient-specific additional variation

Sirio Legramanti, Daniele Durante, and David B. Dunson. Bayesian cumulative shrinkage for infinite factorizations. Biometrika, 107(3): 745â752, 2020


- We approximated the posterior distribution using MCMC
- Most updates were performed using Gibbs / MH
- Pólya-Gamma data augmentation scheme for parameters of logistic models

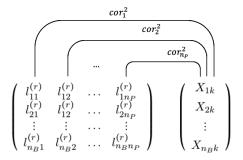
Simulations

- We considered 24 scenarios:
 - Same or different covariates important for interactions and detectability
 - Important covariates are measured, mixed or unmeasured
 - Covariates are correlated or not
 - High and low information scenarios
- Alternative approaches using covariates, ignoring biases, fixed latent factor dimension ...

Simulations

AUROC – predicting missing interactions

Variable importance in latent network models

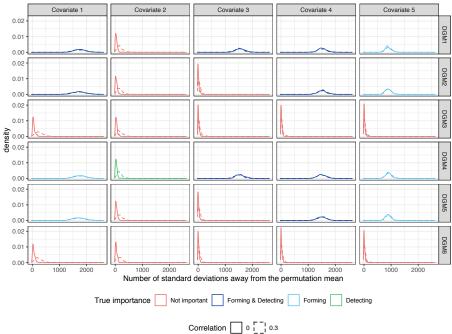

- Interaction model does not include covariates
- We cannot interpret coefficients
 - → lack of identifiability of latent factors
- Covariates are not included in the interaction model

 \rightsquigarrow interpreting coefficients in models with structured latent factors has challenges (Van Ee et al., 2021)

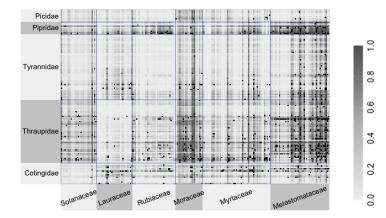
[→] by design

Justin J Van Ee, Jacob S Ivan, Colorado Parks, Wildlife Mevin, B Hooten, and Mevin B Hooten. Community Confounding In Joint Species Distribution Models. 2021.

Variable importance in latent network models

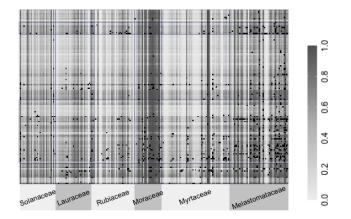


 $l_{ij}^{(r)}$: r^{th} posterior sample of (logit) probability of interaction between bird i and plant j


Calculate T^{obs} by averaging across species and posterior samples
 Permute the covariate vector B times → T^(b), b = 1, 2, ..., B
 Use

$$T^{obs} - \operatorname{avg}\left(T^{(b)}\right) / \operatorname{sd}\left(T^{(b)}\right)$$

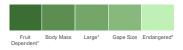
as the variable importance metric



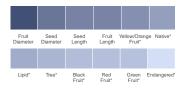
Covariates for the first set of species

Our approach

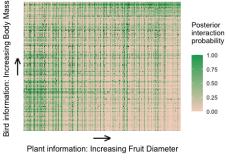
- Species' interaction profiles appear to be taxonomically structured
- **5%** of pairs are predicted to interact (post. prob. > 80%)
- 41% of pairs are predicted to *not* interact (post. prob. < 10%)


Alternative approach using covariates directly

- Species' interaction profiles appear to be taxonomically structured
- **5%** of pairs are predicted to interact (post. prob. > 80%)
- 41% of pairs are predicted to *not* interact (post. prob. < 10%)
- Cross validation:


 \rightsquigarrow compare post. prob. of interaction in held-out pairs compared to all pairs

- → covariates: (post.prob. interacting) 1.4 times higher (all)
 → latent factors: (post.prob. interacting) 3.2 times higher (all)
- Latent factor model differentiates truly possible interactions better


Variable importance on species interactions

(a) Bird Traits Importance

(b) Plant Traits Importance

(c) Interaction matrix ordered by traits

Final thoughts

Latent network models for noisy bipartite networks

 \rightsquigarrow covariates inform the latent factors via separate models \rightsquigarrow quantifies our uncertainty around the estimated graph

- \sim posterior samples + permutation for variable importance
- Study species interactions based on meta-analysis data set

 \rightsquigarrow complete the bipartite graph of species interdependence \rightsquigarrow incorporates the missingness mechanism caused by the taxonomic and geographic bias of individual studies

■ EXTENSION: simultaneous modeling of co-occurrence and interactions

 \rightsquigarrow incorporate geographic information and environmental variables

 \rightsquigarrow investigate the importance of species abundance and competition

Preprint: arXiv:2103.05557

Rpackage: https://github.com/gpapadog/BiasedNetwork

Analysis: https://github.com/gpapadog/Bird_Plant_Interactions

Thank you!