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Causal inference and unmeasured structured confounding

Causal inference formalizes the notion of an effect, and provides
identifiability assumptions

One often invoked assumption is the no unmeasured confounding
assumption (+ positivity = ignorability)

No unmeasured confounding cannot be tested but sensitivity of results
to violations of this assumption can be evaluated [Rosenbaum, 2002]

Can we use unmeasured confounders’ structure to adjust for them?

Spatial structure: spatial variables vary continuously over space
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Unmeasured spatial confounding in the literature

Causal literature [Keele et al., 2015, Papadogeorgou et al., 2018]

Spatial information in treatment assignment

→ not immediately compatible with spatial models

Spatial literature [Hodges and Reich, 2010, Paciorek, 2010]

Inspired by spatial structure in regression residuals

→ Confusion about what these spatial models are capable of accounting for

→ Spatial random effects do not eliminate bias

Spatial and causal inference literatures remain
largely separated

Bridging the two strands of literature by

Unmeasured confounding within the causal inference
framework

Estimation using models and tools common among
spatial statisticians Patrick Schnell
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Spatial data and causal inference in air pollution research

The scientific questions are causal

Do emissions cause pollution?

What effect does an intervention on
polluting sources have on air pollution
concentrations?

The data are spatial

Spatially-indexed

Exposure, outcome, and covariates are
spatially structured

Unmeasured confounders are spatial!

https://kcstormfront.wordpress.com/2015/01/11/2014-in-review/
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Notation

For unit i

Treatment or exposure Zi ∈ Z
Potential outcomes {Yi(z), z ∈ Z}
Observed outcome Yi = Yi(Zi)

Covariates Wi = (Wi1,Wi2, . . . ,Wip)

Average potential outcome: Y (z) = E[Y (z)]

Common identifiability assumptions

Positivity: p(Z = z|W ) > 0, z ∈ Z
No unmeasured confounding: Y (z) ⊥⊥ Z|W

Estimate the average potential outcome via propensity score methods,
outcome regression, or combinations

Confounders W = (Wm,W u), Wm are observed, W u are unobserved

If W u vary spatially, can we adjust for it?
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Potential outcomes

We assume the following true model for the potential outcomes:

Yi(z) = η(z,Wm) + g(W u) + εi

W u are unmeasured variables, denote U = g(W u)

g is such that E[g(W u)] = E[U ] = 0

Additive model, W u do not interact with Z and Wm

For ease of presentation, assume Wm empty, η(z) = β0 + β1z

Focus on β1 = Y (z + 1)− Y (z)
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Bias of common estimators, and the affine estimator

If we could fit model Y ∼ Z + U , we could estimate β1 without bias.

Y ∼ Z → β̂

E
(
β̂|Z

)
= β + (XᵀX)

−1
XᵀE(U |Z)

Y ∼ Z + Spatial RE→ β̃

E
(
β̃|Z

)
= β + {Xᵀ(Var[Y |Z])−1X}−1Xᵀ(Var[Y |Z])−1E[U |Z]

where X = (1,Z)

Identify the bias term, and subtract it

sβ = {Xᵀ(Var[Y |Z])−1X}−1Xᵀ(Var[Y |Z])−1{Y − E[U |Z]}

Find a way to identify E[U |Z]!
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A Gaussian Markov random field construction of the joint distribution

Assumptions on the joint distribution of (U ,Z) to identify E[U |Z]

(U ,Z) is mean 0 normal

1 Cross-Markov property: p(Zi|Z−i,U) = p(Zi|Z−i, Ui),

2 Constant conditional correlation: Cor(Ui, Zi|U−i,Z−i) = ρ.

(
U
Z

)
∼ N

[(
0
0

)
,

(
G Q
Qᵀ H

)−1
]
,

Q is diagonal, and qii = −ρ
√
giihii

For areal data, we specify G,H as CAR
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Calculating the affine estimator

Integrating U|Z out

Y |Z ∼ N [Xβ −G−1QZ,G−1 +R−1],

Z ∼ N [0, (H−QᵀG−1Q)−1]

where R−1 = Cov(ε)

Parameters are estimated based on the restricted likelihood

RL ∝ C1 exp

[
−1

2

{
(Y −BZ)ᵀC2(Y −BZ) +ZᵀA−1Z

}]
where A = (H−QᵀG−1Q)−1, and B = −G−1Q

*Spatial scale restriction* [Paciorek, 2010]

We calculate sβ using the RL maximizers
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Data

Counties in New England in 2012

Z: Emissions from coal power plants in the county [Henneman et al., 2019]

Y : Average annual PM2.5 concetration

Covariates: Power plant characteristics, demographics, weather

G. Papadogeorgou Spatial Causal Inference 10 / 14



Effect of coal emissions on ambient PM2.5

Environmental Only All
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Effect of relative humidity on ambient PM2.5

None Environmental Only All
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Conclusions

Unmeasured spatial confounding is not identified in the analysis of the
effect of coal emissions on ambient PM2.5 concentrations

The affine estimator appears to mitigate unmeasured spatial bias in the
analysis of the effect of relative humidity on PM2.5

Unmeasured confounding is one of the main criticisms of air pollution
epidemiology

We can address the sensitivity of results through

Sensitivitiy analysis

Analysis mitigating bias by unmeasured structured confounders
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