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Spatial data and causal inference in air pollution research

Variables are expected to have
spatial structure

Exposure, outcome, covariates

Questions of interest are often
causal

What is the e↵ect of a specific
intervention on polluting sources?

Integration of spatial data and causal inference
Spatial correlation of confounding variables
Interference, spillover e↵ects
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NOx emission control technologies

Regulations such as the Clear Air Act enforce stricter rules on
emissions

Power plants follow di↵erent compliance strategies

We focus on the installation of NOx emission reduction control
technologies

Selective Catalytic Reduction (SCR) and Selective
Non-Catalytic Reduction (SNCR) are the most e↵ective in
reducing NOx

Are SCR/SNCR more e↵ective than alternative strategies in
reducing ambient ozone concentrations?

NOx: Nitric oxide and nitrogen dioxides, precursors of ozone, reacting with other
compounds in the presence of sunlight to create ozone
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Data

Coal and natural gas power plants during June-August 2004

A = 1 if at least half of facility heat input is used by units with
installed SCR/SNCR technologies, A = 0 otherwise

152 treated facilities, 321 controls

Y : NOx emissions / 4th maximum ambient ozone concentration

Covariates: Power plant characteristics, demographics, weather

SnCR

Treated

Control

Treatment Assignment

0.01

0.02

0.03

0.04

0.05

4th maximum ozone value

Publicly available data sources: Air Markets Program Data, 2000 Census, EPA
monitoring sites



Statistical challenges

Unmeasured spatial confounding
Volatile organic compounds and sunlight is necessary for the
creation of ozone
They may confound the relationship of NOx control strategies
and ambient ozone
Weather and atmospheric covariate information varies spatially

Interference
Pollution travels with the wind
“Upwind” pollution sources can a↵ect ambient concentrations in
the area surrounding power plants at long distances
Discussed in vaccine trials, herd immunity, spillover e↵ects
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Adjusting for Unmeasured Spatial Confounders



Notation

For unit i
Treatment Ai 2 {0, 1}
Potential outcomes Yi(1), Yi(0) (SUTVA)
Covariates Li = (Li1, Li2, . . . , Lip)

Average Treatment E↵ect on the Treated:

ATT = E[Y (1)� Y (0)|A = 1]

Positivity: P (A = 1|L) 2 (0, 1)

Ignorability: Y (1), Y (0)qA|L
Propensity score matching

PS model P (A = 1|L)
Match treated units to controls with similar PS estimates
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Unmeasured spatial confounding

Confounders L = (X,U)
X are observed, U are unobserved

If U varies spatially, can we adjust for it?
If a matched pair is su�ciently close, the treated and control
units will have similar values of U

Observed variables X:
Use the propensity score to adjust for the observed confounders
P (Ai = 1|Xi) = f(Xi) = expit

�
XT

i �
�

Navigate the tradeo↵ between:
1 Making matches as similar as possible with respect to X
2 Small distance of matched pairs to capture similarity in U

Rosenbaum and Rubin [1983]
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Distance Adjusted Propensity Score Matching

For a treated unit i and a control unit j define

DAPSij = w|PSi � PSj |+ (1� w) ⇤Distij , w 2 [0, 1]

where PS propensity score estimates, and Dist spatial
proximity.

w: relative importance of the observed and unobserved
confounders

High values of w - most matching weight on observed covariates
Lowe values of w - most matching weight on spatial proximity



Matches

Naive pairs DAPSm pairs

Average distance of matched pairs
Näıve: 1066 miles
DAPSm: 141 miles



Results
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Reduction by 205 tons of NOx emissions (95% CI: 4 – 406)

�0.27 (95% CI: �2.1 to 1.56) parts per billion in ambient ozone

– The national ambient air quality standard for ozone is 70 parts per billion.
– Keele et al. [2015]



Conclusions

We propose a method to reduce bias from spatial unmeasured
confounding

SCR/SNCR control technologies lead to
Reductions in NOx emissions
Their e↵ect on ozone is not significant

Additional information in the paper:

How to pick the tuning parameter w
Robustness to the choice of w as an indication of no unmeasured spatial
confounding
Comparison with other methods for incorporating spatial information

Papadogeorgou, Choirat, and Zigler [2018a]



Relaxing the no interference assumption



Interference

Previously, we assumed that each unit had Y (0), Y (1)
Your outcome has nothing to do with my treatment

Treatment e↵ects with “interference”
Your outcome may depend on your and my treatment
Potential outcomes Y (0, 0, . . . , 0), Y (0, 0, . . . , 0, 1), etc

Vaccine trials, infectious diseases

Ambient pollution concentrations are a↵ected by multiple
sources

Pollution emitted “locally”
Pollution that is transported from nearby sources
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Partial interference

Partial interference: Partition of units in interference clusters
A unit’s outcome can depend on the treatment level of units in
their cluster
Does not depend on treatment of units in other clusters

Other
SCR/SNCR



Defining estimands in the presence of interference

Causal inference with interference was introduced in the context
of two-stage randomized trials [Hudgens and Halloran, 2008]

Extensions to observation studies consider estimands for
two-stage randomized design (Tchetgen Tchetgen and VanderWeele

[2012], Perez-Heydrich et al. [2015])

Such estimands represent
What would we observe if treatment was assigned randomly to
units with probability ↵?

Are these estimands interpretable?
Covariates can be predictors of treatment allocation [Barkley et al.,

2017]

Dependence between units
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Counterfactual treatment allocation under realistic interventions

Let P↵,L be the counterfactual treatment allocation
How treatment is assigned in a hypothesized world
↵ represents the cluster-average propensity of treatment

How would treatment arise in cluster i if
The cluster-average propensity of treatment was set to ↵?
Individual treatment adoption depended on a covariate L with
log-odds �L?
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Notation

Clusters i 2 {1, 2, . . . , N} with ni units

For unit j in cluster i
Treatment Aij 2 {0, 1}
Potential outcomes Yij(·) = {Yij(ai),ai 2 {0, 1}ni},
Unit covariates Lij = (Lij1, Lij2, . . . , Lijp)

For cluster i
Cluster treatment Ai = (Ai1, Ai2, . . . , Aini)
Cluster treatment excluding unit j: Ai,�j

Cluster potential outcomes Yi(·)
Cluster covariates Li
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Covariate dependent counterfactual treatment allocation

How would treatment arise in cluster i if

The cluster-average propensity of treatment was set to ↵?

Individual treatment adoption depended on a covariate L with
log-odds �L?

Define
logitP↵,L(Aij = 1|Lij ; �L) = ⇠↵i + Lij�L

where
1

ni

niX

j=1

P↵,L(Aij = 1|Lij ; ⇠↵i , �L) = ↵



Covariate dependent counterfactual treatment allocation

How would treatment arise in cluster i if

The cluster-average propensity of treatment was set to ↵?

Individual treatment adoption depended on a covariate L with
log-odds �L?

Define
logitP↵,L(Aij = 1|Lij ; �L) = ⇠↵i + Lij�L

where
1

ni

niX

j=1

P↵,L(Aij = 1|Lij ; ⇠↵i , �L) = ↵



Average potential outcome

Individual average potential outcome

Y ij(a;↵) =
X

s

Y (Aij = a,Ai,�j = s)P↵,L(Ai,�j = s|Aij = a)

Average all possible treatment allocations where
Observation ij gets treatment a
Cluster-level treatment probability is ↵

Group average potential outcome Y i(a;↵) =
1

ni

niX

j=1

Y ij(a;↵)

Population average potential outcome Y (a;↵) = EG0

⇥
Y i(a;↵)

⇤
,

for super-population of clusters G0

Direct e↵ect for fixed cluster-average treatment propensity

DE(↵) = Y (1,↵)� Y (0,↵)

Indirect e↵ect between two fixed cluster-average treatment
propensity

IE(↵1,↵2) = Y (0,↵1)� Y (0,↵2)
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Group and population potential outcome estimators

Assumptions

Positivity: P (Ai = ai|Li) > 0, for all ai 2 {0, 1}ni

Ignorability: Yi(·)qAi|Li

Define

bYi(a,↵) =
niX

j=1

P↵,L(Ai,�j |Aij = a,Li; �)

fA|L,i(Ai|Li;�)ni
I(Aij = a)Yij

and

bY (a;↵) =
1

N

NX

i=1

bYi(a,↵)

where fA|L,i(Ai|Li;�) is the propensity score of the observed
treatment vector
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Theoretical and practical results

All results assume that positivity and ignorability hold
bYi(a,↵) is unbiased for Y i(a,↵) (for known propensity score)

bY (a;↵) is consistent (for correctly-specified estimated propensity score)

Asymptotic results are derived for increasing number of clusters

Asymptotic or bootstrap CIs are acquired

Performance was checked in an extensive simulation study

Coverage of bootstrap CIs was better than asymptotic CIs for a
small number of clusters



Propensity score and counterfactual treatment allocation

Propensity score of observed treatment

logitP (Aij = 1|Lij) = �0 + bi + LT
ij�, bi ⇠ N

�
0,�2

b

�

Cluster propensity score:

fA|L,i(Ai|Li;�) =

Z niY

j=1

P (Aij |Lij , �, bi)f(bi|�2
b )dbi

Use the observed treatment allocation to inform P↵,L

logitP↵,L(Aij = 1|Lij ; �) = ⇠↵i + LT
ij�, where
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Direct and indirect e↵ect of SCR on ambient ozone

DE(α) IE(0.1, α) IE(0.4, α)

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

−0.04

0.00

0.04

α

DE(↵) = Y (1,↵)� Y (0,↵)

IE(↵1,↵2) = Y (0,↵1)� Y (0,↵2)

Ozone is measured in parts per million
The national ozone air quality standard of 0.07 parts per million.



Concluding remarks

Estimands for realistic public health interventions
Cluster-average propensity of treatment
Distribution of cluster-average propensity of treatment

Proposed consistent estimators and derived asymptotic
variances

SCR/SNCR technologies are more e↵ective in decreasing ozone
against alternatives

In the surrounding area
In the surrounding area of other power plants

Papadogeorgou, Mealli, and Zigler [2018b]
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