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Abstract

Statistical methods to evaluate the effectiveness of interventions are increasingly challenged by the inherent

interconnectedness of units. Specifically, a recent flurry of methods research has addressed the problem of

interference between observations, which arises when one observational unit’s outcome depends not only on its

treatment but also the treatment assigned to other units. We introduce the setting of bipartite causal inference

with interference, which arises when 1) treatments are defined on observational units that are distinct from

those at which outcomes are measured and 2) there is interference between units in the sense that outcomes

for some units depend on the treatments assigned to many other units. Basic definitions and formulations are

provided for this setting, highlighting similarities and differences with more commonly considered settings

of causal inference with interference. Several types of causal estimands are discussed, and a simple inverse

probability of treatment weighted estimator is developed for a subset of simplified estimands. The estimators

are deployed to evaluate how interventions to reduce air pollution from 473 power plants in the U.S. causally

affect cardiovascular hospitalization among Medicare beneficiaries residing at 23,458 zip code locations.

1. Introduction

Consider evaluating the causal effect of an intervention in a context with the following features: 1) the in-

tervention is defined and measured on one type of observational unit, but 2) outcomes of interest are defined

and measured on a second, distinct type of unit. Common examples include educational interventions applied

to teachers with outcomes of interest defined on students, social interventions applied at neighborhoods with

∗Harvard T.H. Chan School of Public Health
†Duke University

1

ar
X

iv
:1

80
7.

08
66

0v
1 

 [
st

at
.M

E
] 

 2
3 

Ju
l 2

01
8



outcomes defined at the level of the resident, or, as will be the focus of the present discussion, interventions

applied at sources of air pollution (e.g., power plants) and health outcomes measured among people at specific

population locations (e.g., zip codes). We refer to such a setting as one of bipartite causal inference, reminis-

cent of the two types of nodes in a bipartite graph. Such bipartite structures are commonplace in many fields

where interest lies in evaluating the causal effects of an intervention.

Consider a setting of bipartite causal inference augmented with the complexity that interconnectedness

among the two types of units gives rise to what has been termed in the causal inference literature interference,

where outcomes for a particular unit depend upon treatments assigned to (possibly many) other units. We term

the combination of these two features as the setting of bipartite causal inference with interference, which has

not, to our knowledge, been previously considered.

Most existing work on causal inference with interference is formalized in the familiar setting with one level

of observational unit [8, 7, 20, 9, 19, 10, 21, 23, 22, 14, 1, 4, 2, 13, 15, 18, 12]. The most well-studied examples

are studies of infectious diseases where vaccinating a person will also reduce the infection risk of others who

come into contact with that person [7, 10, 13, 15, 18] and the analysis of social networks where interventions

can affect a unit directly and also through impact on an individuals’ peers. Various estimands have been

introduced to describe the effect on a particular unit’s outcome due to treatments applied to other units, with

terminology including indirect effects, spillover effects, contamination effects, and peer effects, but the common

theme is that interference typically arises because unit-to-unit interactions lead outcomes of some to depend

on outcomes (and, by extension, treatments) of others. Methods for estimation and inference in such settings

have considered both randomized and observational settings, with emphasis on settings of so-called partial

interference that leverage assumptions of interference within, but not between, distinct and non-overlapping

clusters of units [20, 9, 10, 21, 13, 18].

Similar formalization of interference problems in the bipartite setting presents challenges that have not

been previously considered. One reason is the required technical distinctions relating to the two types of

observational unit; defining estimands and corresponding estimators requires maintenance of the distinction

between units where interventions occur and those where outcomes are measured. What’s more, settings of

bipartite causal inference with interference likely arise due to underlying scientific phenomena that cannot be

described by the type of unit-to-unit outcome dependencies common to the study of infectious diseases or social

networks. In the bipartite setting, interference is more likely a consequence of complex exposure dependencies
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that describe how the impact of a particular treatment propagates across units. Settings of interference due to

complex exposure dependencies have been considered in the setting of one observational unit, albeit with much

less focus than settings of unit-to-unit outcome dependencies [19, 22, 6].

The goal of this paper is to formalize the development of potential-outcomes methods relevant to settings of

bipartite causal inference with interference. We define potential outcomes in this setting and introduce interfer-

ence mappings describing the network of interconnectedness between units. From here we formalize alterna-

tives to the commonly-invoked Stable Unit Treatment Value Assumption and propose several causal estimands

unique to the bipartite setting. The discussion of estimands is intentionally general in order to introduce new

types of estimands that could potentially be of interest in the bipartite setting. Ultimately, we invoke several

simplifying assumptions, including a bipartite version of partial interference, to focus on a subset of relevant

estimands for which corresponding estimators can be derived from existing inverse probability weighted esti-

mators. Throughout, we highlight similarities and differences with existing estimands and methods for causal

inference with interference in settings with one level of observational unit.

For illustration, we frame the discussion in the context of evaluating interventions designed to reduce

pollution-related health burden by limiting harmful emissions from power plants in the U.S.. The features

defining the bipartite structure are that interventions are defined and implemented at the level of the power

plant, but key questions for regulatory policy pertain to health outcomes (e.g., cardiovascular hospitalizations)

measured at population locations across the country. Unlike in most existing literature on causal inference

with interference, the interference in the power plant case is not due to dependent outcomes among locations

or people (e.g., one person’s hospitalization does not affect another person’s risk). Rather, interference in this

case is due to the nature of pollution exposure, which derives from complex processes that render an individual

location subject to actions at many power plants and many power plants impacting common sets of locations.

Ultimately, the development in this paper is designed as a framework for addressing problems and data

structures that have not been previously considered alongside the formalization of causal inference with inter-

ference. Explicitly targeting the complexities of interference due to air pollution transport presents the first

step towards statistical tools for evaluating air quality control policies that have to date relied on deterministic

physical-chemical air quality models that are not validated with observed data.
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2. Motivating Setting: Power Plant Regulatory Policies

Various compounds emitted from power plants undergo complex chemical and physical processes to form

harmful air pollution that is transported across space. This phenomenon is known as pollution transport. In

light of this phenomenon, existing regulatory assessments use deterministic models of pollution transport to

simulate regulatory impacts. From a statistical perspective, the phenomenon of pollution transport manifests

as interference between units, since outcomes at one location are dependent on treatments at many pollution

sources located “upwind” (although note that pollution transport is generally more complex than just the direc-

tion of the wind). Development of new methods for interference can enhance current regulatory assessments

by combining rigorous statistical methodology with state-of-the-art knowledge of pollution transport.

For example, consider a specific intervention that may or may not be implemented at a power plant, namely,

the installation of selective catalytic reduction or selective non-catalytic reduction (SnCR) system, a technology

known to reduce emissions of nitrous oxides (NOx), important precursors to the formation of various types of

air pollution known to be associated with adverse health outcomes [16, 3]. We aim to characterize the extent

to which installation of such a SnCR system causally impacts hospitalization rates for cardiovascular disease

(CVD) among Medicare beneficiaries. This setting fits the description of bipartite causal inference with inter-

ference because: 1) SnCR systems are installed (or not) at individual power plants; 2) CVD hospitalizations are

measured at zip codes; 3) CVD hospitalizations at a given zip code depend on the constellation of SnCR sys-

tems installed at many upwind power plants and; 4) a given power plant may impact the CVD hospitalizations

at multiple zip codes.

3. Potential Outcomes for Bipartite Causal Inference with Inter-

ference

The defining feature of the bipartite structure is the presence of two distinct types of observational units. First,

define the set of interventional units, P “ tp1, p2, . . . , pP u to be the available observational units upon which

interventions either occur or not. In the motivating example, P is a set of P “ 473 power plants located across

the U.S.. For each pi P P , let Ai “ 1, 0 denote the presence, absence of an intervention at the ith interventional

unit, for example, an indicator of whether a power plant installs a SnCR system. Let A “ pA1, A2, . . . , AP q
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denote a vector of possible treatment assignments to each of the interventional units in P , with a P ApP q

representing one vector of 2P possible treatment allocations. Denote covariates measured at the level of the

interventional units with Wi, for i “ 1, 2, . . . P .

Let M “ tm1,m2, . . . ,mMu, denote a set of M units of a second type, termed outcome units. In the

motivating example,M consists of M “ 23, 458 zip codes located across the U.S.. Let Yj denote a measured

outcome at each of the j “ 1, 2, . . .M outcome units, for example, the number of CVD hospitalizations among

Medicare beneficiaries residing at zip codemj . Similarly, Xj could denote covariates measured at the outcome

units, for example, zip code level population demographics. The salient feature of the bipartite structure is that,

without further restrictions or assumptions, interventions are not defined on the outcome units (e.g., a zip code

cannot be “treated” with a SnCR system), yet outcomes of interest are not defined on the interventional units

(e.g., a power plant does not have a hospitalization count).

Defining potential outcomes for the bipartite setting is notationally analogous to settings of one level of

observational unit. Let Yjpaq denote the potential outcome that would be observed at outcome unit mj under

treatment allocation a, for example, the number of CVD hospitalizations that would occur at the jth zip code

under a specific allocation of SnCR systems on power plants. In the most general setting, a unique Yjpaq is

defined for every possible a P ApP q. The unique feature of these definitions in the bipartite setting is that

Yjpaq are defined for j “ 1, 2, . . .M , but a is a vector of length P .

3.1. Common Simplifications to Bipartite Structures

In many circumstances, the bipartite structure of the data can be simplified by projecting onto the space of

one type of observational unit. Projecting to the space of M could follow from linking each mj P M to

exactly one pi P P by, for example, assuming that each mj adopts the treatment status of the closest pi.

Such a reduction would extend the definition of the treatment (originally defined on P) to the level ofM, and

subsequent development could proceed as thoughM were the only observational units. A similar projection

to the space of P could follow by aggregating measures originally defined at the level of M. For example,

one could consider the CVD hospitalizations among all zip codes within a certain distance of each pi P P , and

proceed as though P were the only observational units [16, 17, 11]. Such simplifications might be appropriate

in settings for which it is self-evident which single interventional unit corresponds to a given outcome unit,

such as in settings where observations are hierarchically clustered (e.g., students within classrooms).
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Other simplifications to the bipartite structure could follow from changing the definition of the intervention

(and the subsequent question of interest). For example, the intervention could be re-defined to pertain to each

mj as some function of the interventions on P . One such possibility in the power plant example would be

defining a zip-code level treatment as a function of the treatment statuses of several power plants, such as the

proportion of upwind power plants that installed a SnCR system. This would be similar to a so-called “exposure

mapping,” [2] which in this case would transform the goal of estimating causal effects of the intervention

inherently defined at the level of P to estimating effects of the new re-defined treatment at the level of M,

which may not correspond to any practicable intervention.

The development herein is designed to formulate causal estimands when no such simplification is appro-

priate, as in the power plant example where assigning each zip code to one power plant (or vice versa) would

be too simplistic in light of the realities of air pollution transport and interest lies in the effects of specific

interventions on individual power plants.

3.2. Extending to the Bipartite Setting: Interference Mappings and Struc-

tured SUTVA

Formalizing potential outcomes and causal estimands in the bipartite setting requires a reformulation of com-

mon assumptions about potential outcomes and interference, in particular the stable unit treatment value as-

sumption (SUTVA). Towards this goal, we cast the bipartite data structure as a network with two different

types of nodes, pi P P and mj P M, where edges between pi and mj denote that interventions applied at

pi have some bearing on outcomes measured at mj . We use the term interference mapping to denote such

a network structure. In the power plant setting, this structure is governed by atmospheric and climatologi-

cal conditions that transport power plant emissions across space as they transform into population pollution

exposure.

For each outcome unit, let the interference set be the set of interventional units for which the presence or

absence of the intervention may affect outcomes [12], a notion that will be made formal with a reformulated

statement of SUTVA. Let tJj “ ptj1, tj2, . . . , tjP q, where tji “ 1p0q if pi is in the interference set for mj .

Define the interference mapping as T “ pt1, t2, . . . , tM qJ, where T is aMˆP matrix denoting the interference

sets for all mj P M. This definition of T essentially amounts to what is often considered as an “adjacency
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matrix,” even though the entries of T in this case can encode more complex relationships between the pi,mj

than spatial adjacency. For notational simplicity, we will let pi P Tj denote all i such that tji “ 1 and use this

to refer to all interventional units in the interference set for a given mj . In the power plant example, the set of

pi P Tj can be thought of as the set of power plants that are “upwind” from the jth location, and we will refer

to it as such. Similarly, we will let mj P T
J
i denote all j such that tji “ 1 and use this to refer to all outcome

units that contain pi in their interference set. In the power plant example, this can be thought of as all locations

that are “downwind” from the ith power plant.

Let AtTj“1u denote the subvector of treatment assignments for the interventional units in the interference

set for unit mj , that is, the elements Ai corresponding to pi P Tj . Let AtTj‰1u be the treatment assignment

subvector for interventional units not in the interference set formj . We reformulate the usual SUTVA as follows

to formalize the meaning of the interference mapping:

Assumption: Structured SUTVA: For a specified interference mapping, T :

(i) YjpAq “ YjpA
1q for all j if A “ A1,

(ii) YjpAq “ YjpA
1q for all j when AtTj“1u “ A1

tTj“1u
or equivalently, YjpAtTj“1u,AtTj‰1uq “ YjpAtTj“1uq

Part (ii) of structured SUTVA clarifies that potential outcomes for unit mj need only be considered in terms of

the treatment assignment vector of the pi P Tj . To simplify notation in the subsequent, we will use the subscript

p´iq denoting “not i” to implicitly refer to all interventional units in a given interference set except for pi. For

example, YjpAi “ a,Ap´iq “ ap´iqq will refer to the potential outcome at mj if pi receives treatment a and the

remainder of interventional units in Tj , denoted with pk‰i P Tj , receive treatment vector ap´iq.

Several familiar settings can be formulated via T and Structured SUTVA. To aid illustration, Figure 1

schematically depicts three bipartite interference mappings for a simple setting with M “ 4 and P “ 3, where

ovals surrounding units represent membership in interference sets. A setting where outcome units are clustered

hierarchically such that each mj PM is subject to exactly one Ai (e.g., students grouped within classrooms)

and there is no interference is pictured in Figure 1(a). The mapping in this setting is T “

ˆ

1 0 0
1 0 0
0 1 0
0 0 1

˙

. More

generally, this type of setting corresponds to Tj having exactly one element equal to 1, with every Tj “ Tj1

when mj and mj1 are in the same cluster and otherwise TJj Tj1 “ 0. The structure depicted in Figure 1(b)

corresponds to a bipartite version of the so-called partial interference assumption [10, 20], where: 1) units

are divided into non-overlapping clusters consisting of ě 1 outcome unit and ě 1 interventional unit; and 2)
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outcome-unit potential outcomes are allowed to depend only on the treatments assigned to interventional units

within the same cluster. Figure 1(b) corresponds to T “

ˆ

1 1 0
1 1 0
0 0 1
0 0 1

˙

, and this setting is generally defined by

specifying Tj as a P -vector with ith element equal to 1 for each of the pi in the same cluster, maintaining the

feature that Tj “ Tj1 when mj and mj1 are in the same cluster and otherwise TJj Tj1 “ 0. Figure 1(c) depicts

a more general interference structure that cannot be described by non-overlapping clusters as in the partial

interference case, corresponding to T “
ˆ

1 1 0
1 1 0
0 1 0
0 1 1

˙

. Using Figure 1(c) as an example, the set of upwind power

plants for unit m1 is T1 “ p1, 1, 0q, and the set of downwind zip codes for unit p2 is TJ2 “ p1, 1, 1, 1q. Note

that formulation of interference mappings in the standard single-unit setting could proceed analogously, but

with T as M ˆM (or P ˆ P ), This would include the most standard setting of no interference, corresponding

to T “ diagt1uMˆM .

m1


m2


m3


m4
p1
 p2


p3


(a) Clusters with SUTVA

m1


m2


m3


m4
p1
 p2


p3


(b) Partial Interference

m1


m2


m3


m4
p1
 p2


p3


(c) General Interference

Figure 1: Illustrations of interference mappings in simplified setting with pM “ tm1,m2,m3,m4u) and (P “
tp1, p2, p3u). Potential outcomes at mj depend upon treatments at all pi in the same oval.

4. Estimands for Bipartite Causal Inference with Interference

As with other settings of causal inference with interference, the interconnectedness between units may not only

complicate inference for familiar causal estimands, but may also introduce new causal estimands of interest.

Among causal estimands of frequent interest in the presence of interference with one level of observational unit

are so-called “total” and “overall” effects. We focus in particular on other estimands akin to “direct effects,”

which capture the effect of an individual unit being treated while holding fixed the treatment statuses of other

units in the interference set, and “indirect” effects, which capture the effect on a particular unit of holding that

unit’s treatment status fixed but changing the treatment statuses of others. We focus on these estimands in
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particular to explicate complications arising in the bipartite setting due to the fact that treatment is not directly

applied or withheld from outcome units, as in studies with one level of observational unit, and notions of

“direct” and “indirect” take on a somewhat different meaning.

Recall that, for a specified interference mapping, T , the p´iq subscript denotes all interventional units but

pi within the interference set for a given mj , i.e., pk‰i P Tj . In principal, causal effects can be defined as

comparisons between Yjpaq, Yjpa1q for any two ta,a1u P ApP q, that is, any two intervention allocations in the

space of possible allocations. As a starting point for development, denote the most primitive individual-level

causal effects as:

YjpAi “ a,Ap´iq “ ap´iqq ´ YjpAi “ a1,Ap´iq “ a1p´iqq, (1)

which denotes the causal effect on outcome unit mj of treatment allocation a with ai “ a versus treatment

allocation a1 with a1i “ a1. A key feature of the bipartite setting highlighted in (1) is the natural definition of

individual effect for every ppi,mjq pair for mj P M and pi P P . For example, setting a “ 0, a1 “ 1, and

ap´iq “ a1
p´iq in (1) yields a quantity akin to a “direct” effect on outcome unit mj of treating (vs. not treating)

interventional unit pi while holding the treatment status of all other pk‰i P Tj fixed at ap´iq. P such “direct”

effects could be defined for outcome unit mj .

4.1. Individual-Level Estimands based on Average Potential Outcomes Under

Classes of Treatment Allocations

While development of causal estimands with interference has followed along several lines of development,

we adopt a perspective analogous to [10, 17], where estimands are defined based on average individual-level

potential outcomes, averaged over many possible treatment allocations. For example, much work has focused

on “allocation strategies” representing values of a that adhere to a certain probability (or proportion) of treated

units, typically denoted with α [21, 13, 17, 18].

We extend this convention and define α to denote a counterfactual treatment allocation strategy where the

propensity of interventional units in an interference set to receive treatment Ai “ 1 is set to α. In the bipartite

setting, we refer to the definition of α as “M-centric” in that it refers to the allocation to all units in the

interference set for a particular mj , for example, all power plants “upwind” from a specific zip code. The
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set of possible treatment allocations adhering to α is denoted with Ap|Tj |q, where |Tj | denotes the number of

interventional units in the interference set for mj .

In the bipartite setting, individual average potential outcomes that average over all treatment allocations

fixing Ai “ a for a pi P Tj and having treatment propensity of the interference set fixed to α are defined as:

ȲjpAi “ a, αq “
ÿ

sPAp|Tj |´1q

YjpAi “ a,Ap´iq “ sqπps|Ai “ a;αq, (2)

where s P Ap|Tj | ´ 1q } denotes the set of possible ap´iq that, along with ai “ a, lie in Ap|Tj |q. Here,

πps|Ai “ a;αq denotes the probability of each such allocation, conditional on Ai being fixed at a, which is

specified by the researcher to, for example, represent independent Bernoulli allocation of treatments to units

or realistic interventions dependent on covariates [21, 17]. Average potential outcomes of the form (2) will be

used to construct causal estimands of interest.

Using (2), we define a bipartite version of an individual-level “direct effect,” where “direct” is used to refer

to the effect of treating (vs. not) a specific pi P Tj , while holding the treatment allocation strategy fixed at α:

DEpi,jqpαq “ ȲjpAi “ 1;αq ´ ȲjpAi “ 0;αq (3)

For example, DEpi,jqpαq would be the direct effect on outcome unit mj of treating (vs. not) the ith power

plant, when all upwind plants are assigned treatment according to α.

Similarly, we define a bipartite version of an individual-level “indirect effect,” where “indirect” is used to

refer to the effect of holding the treatment status of a specific pi fixed, while changing the allocation to other

pk‰i P Tj :

IEa
pi,jqpα, α

1q “ ȲjpAi “ a;αq ´ ȲjpAi “ a;α1q (4)

For example, IEa
pi,jqpα, α

1q would be the indirect effect on outcome unit mj of holding the treatment status of

power plant pi to Ai “ a and changing treatment allocations of other upwind power plants from α to α1.

In addition to expanded notation relative to settings with one level of unit, the salient feature of individual-

level effects such as (3) and (4) is that they are defined, in full generality, for every ppi,mjq pair of pi P P and

mj PM. This is because, unlike in the single-unit setting, there is no automatic or self-evident notion of which

treatment “directly” applies to each unit; interest could lie, at least in principle, in the effect of intervening at
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any power plant on any zip code location. This introduces different strategies for defining the types of average

causal effects that will be discussed in Section 4.2..

4.2. M-indexed Average Causal Effects

Recall that, unlike in standard settings of interference where treatments are given directly to one level of unit,

the bipartite setting entails no automatic or self-evident notion of which treatment applies directly to which

unit. Thus, it may be of interest to average individual-average potential outcomes for each outcome unit over

all interventional units in the interference set. We introduce the termM-indexed average potential outcomes

to refer to average potential outcomes for a given mj PM, averaged over pi P Tj :

Ȳjpa, αq “
1

|Tj |

ÿ

iPTj

ȲjpAi “ a, αq, (5)

which are defined to represent the average potential outcome under Ai “ a and allocation program α across all

interventional units in the interference set for mj .

TheM-indexed average potential outcomes in (5) can be used to define average causal effects paralleling

those defined in Section 4.1.. Define theM-indexed average direct effect as:

DEjpαq “ Ȳjp1, αq ´ Ȳjp0, αq “
1

|Tj |

ÿ

iPTj

DEpi,jqpαq (6)

to denote the average effect on outcome unit mj of treating a single pi P Tj while holding fixed the treatment

propensities for all pk‰i P Tj , averaged over all pi P Tj . The population-average M-indexed direct effect

could be defined as D̄EM “ 1
M

ř

DEjpαq representing, for example, the average effect on hospitalizations of

installing (vs. not) SnCR on a single upwind power plant while holding the treatment allocation of all upwind

plants fixed at α.

Similarly, theM-indexed indirect effect is defined as:

IEa
j pα, α

1q “ Ȳjpa, αq ´ Ȳjpa, α
1q “

1

|Tj |

ÿ

iPTj

IEa
pi,jqpα, α

1q (7)

to represent the average effect on outcome unit mj of holding treatment at a single pi P Tj fixed at a while
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changing the treatment allocation for the interference set from α to α1, averaged over all pi P Tj . The

population-average M-indexed indirect effect could be defined as ¯IEM “ 1
M

ř

IEjpαq representing, for

example, the average effect of holding the SnCR status fixed at an upwind power plant while changing the

SnCR allocation of all other upwind plants from α to α1.

4.3. P-indexed Average Causal Effects

The indexing of individual-level potential outcomes in (2) (and their corresponding individual-level estimands

in (3) and (4)) by both the outcome unit j and interventional unit i invites averaging potential outcomes over

pi P Tj , as in the M-indexed quantities in Section 4.2., or averaging potential outcomes over mj P TJi ,

which might be referred to as “P-indexed” quantities. P-indexed effects analogous to (5), (6), and (7) could

be defined for a particular pi based on averaging potential outcomes over mj P T
J
i representing, for example,

the average impact of a treatment decision at a particular power plant, averaged across all downwind zip codes.

A main complication with such quantities under the present framework relates to α which, recall, is inherently

M-centric in that it refers to the allocation of treatments to interventional units in the interference set for

mj , pi P Tj . Thus, while calculating M-centric average potential outcomes involves fixing α to a single

interference set (Tj), calculating a P-indexed average potential outcome would correspond to averaging over

potential outcomes under multiple different treatment allocations pertaining to the interference sets of each

mj P T
J
i , i.e., to fixing the treatment allocation of interventions to all pi P Tj for all mj P T

J
i . For example,

one could define a P-indexed direct effect analogous to (6) to characterize how installing an SnCR system at

power plant pi affects hospitalization outcomes, on average across all downwind zip codes, with each downwind

zip code having propensity of SnCR installation among its respective upwind plants fixed to α. Such P-indexed

effects, while potentially of interest and an important topic for future work, are not pursued here in favor of

exploration of a subset ofM-indexed effects for which estimators can be derived from existing work.

4.4. Key-Associated AverageM-indexed Causal Effects

The fundamental feature that individual-level causal effects can be naturally defined for every ppi,mjq pair

in the bipartite setting may be simplified in settings where each outcome unit can be associated with a single

pi P Tj at which intervening is of particular interest. Denote such an interventional unit with p˚ipjq, defined
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for every mj P P . We will refer to p˚ipjq as the “key associated” interventional unit for outcome unit mj . In

practice, criteria for determining the relevant p˚ipjq for every mj PM will undoubtedly vary, but examples in

the power plant setting include the closest or largest power plant located upwind from a given location. When

indexing other quantities defined for p˚ipjq, we will simplify notation and use the subscript i˚. For example, Ai˚

will be used to denote the treatment assignment of p˚ipjq.

The potential outcomes and estimands in Section 4.2. averaged over all interventional units for each mj ,

owing to the fact that the bipartite setting does not inherently contain a notion of which pi corresponds “directly”

to each mj . However, definition of a p˚ipjq for every mj PM, invites focus on only a subset of the individual-

level causal effects of type (3) and (4), specifically those corresponding to the intrinsic interest in the key-

associated interventional unit. Rather than consider every ppi,mjq pair, interest is confined to exactly one

individual-level direct effect (DEpi˚,jqpαq) and exactly one individual-level indirect effect (IEa
pi˚,jqpα, α

1q) for

each mj PM.

Population-average analogs of these effects can be defined as:

D̄E
˚
pαq “

1

M

M
ÿ

j“1

DEpi˚,jqpαq (8)

¯IE
˚a
pα, α1q “

1

M

M
ÿ

j“1

IEa
pi˚,jqpα, α

1q. (9)

The estimand (8) corresponds to the average effect on outcome units of treating (vs. not) the key-associated unit

while holding fixed the allocation program to other interventional units in the interference set. In the power

plant example, this could correspond, for example, to the average effect on hospitalizations of installing an

SnCR system on the closest power plant while holding fixed the allocation of SnCR systems to other upwind

plants. The estimand (9) corresponds to the average effect on outcome units of holding the treatment at the

key-associated unit fixed while varying the allocation program to other interventional units in the interference

set from α to α1. In the power plant example, this could correspond to the average effect on hospitalizations of

holding the SnCR status of the closest power plant fixed while changing the allocation to other upwind plants.
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5. Estimators under Bipartite Partial Interference in Observa-

tional Studies

While the development in Section 4. pertains to a general form of interference mappings, T , we illustrate

the development of bipartite estimators for the simplified setting of partial interference, for which existing

estimators in the one unit setting extend in a relatively straightforward way. Consider a partition of P into K

non-overlapping clusters of interventional units: tP 1, P 2, . . . , PKu, each of size |P k|. For example, power

plants could be clustered according to geographic proximity. Consider a corresponding grouping of M into

exactly K non-overlapping clusters tM1,M2, . . . ,MKu, where each Mk consists of |Mk| outcome units that

are linked in some fashion to the interventional units in P k. For example, Mk could consist of all of zip

code locations within a certain distance of at least one of the power plants in P k. Partial interference in this

case assumes that potential outcomes at mj P M
k depend only on the treatments assigned to pi P P k. In

the terminology of Section 3.2., this amounts to an interference mapping where T has a block structure such

that, for k “ 1, 2, . . . ,K, Tj is the same for all mj P Mk, with tji “ 1 for all pi P P k and tji “ 0

otherwise. Recall that this implies TJj Tl “ 0 for all mj PM
k,ml PM

k1 , denoting no common interventional

units in the interference sets for two outcome units in different clusters. For simplicity, assume that for each

k “ 1, 2, . . . ,K, both Mk and P k contain at least one unit of their respective type. Figure 2 illustrates one

such clustering in the power plant example.

5.1. Cluster-Level Average Potential Outcomes under Partial Interference

The partial interference assumption invites definition of cluster-specific analogs to the average effects proposed

in Section 4.2.. The expressions pi P Tj and mj P T
J
i become equivalent to pi P P k and mj P M

k, and α

takes on the familiar meaning of the cluster-level treatment propensity referring to all pi P P k. M-indexed

effects such as those in (6) and (7) could be averaged over all j P Mk for all k “ 1, 2, . . . ,K to create cluster

averages. However, we focus on developing estimators for the power plant setting that correspond to analogs

to the key-associatedM-indexed estimands defined in Section 4.4..
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(a) (b)

Figure 2: (a) Grouping of power plants in interference clusters and assignment of zip codes to clusters. Each
cluster is depicted with two polygons, the inner polygon corresponds to the convex hull of the power plants, and
the outer polygon corresponds to the convex hull of zip code centroids in that cluster. (b) One cluster of power
plants and corresponding zip codes with zip codes’ centroids depicted in blue.

Specifically, based on (2) we define cluster-level average potential outcomes of the form:

Ȳ kpAi˚ “ a, αq “
1

|Mk|

ÿ

jPMk

ȲjpAi˚ “ a, αq (10)

to denote the cluster-level average potential outcome when p˚ipjq receives treatment a and all other pi in the clus-

ter receive allocation program α, averaged over all outcome units in the cluster. Population average potential

outcomes can be subsequently defined with Ȳ pAi˚ “ a, αq “
ř

k Ȳ
kpAi˚ “ a, αq{K.

Formulation of cluster-average potential outcomes leads to the following expressions for cluster-level aver-

age direct and indirect effects:

DEk˚pαq “ Ȳ kpAi˚ “ 1, αq ´ Ȳ kpAi˚ “ 0, αq “
1

|Mk|

ÿ

jPMk

DEpi˚,jqpαq (11)

IEk˚apα, α1q “ Ȳ kpAi˚ “ a, αq ´ Ȳ kpAi˚ “ a, α1q “
1

|Mk|

ÿ

jPMk

IEa
pi˚,jqpαq (12)
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Population-level effects defined in (8) and (9) can be constructed from (11) and (12) as

DE˚pαq “
1

K

ÿ

k

DEk˚pαq, and (13)

IEa˚pα, α1q “
1

K

ÿ

k

IEka˚pαq. (14)

5.2. IPTW Estimator for Average Potential Outcomes

Here we illustrate that, among all the estimands defined for the bipartie setting in Section 4., existing esti-

mators in [21, 12, 17] are essentially directly applicable to estimands that rely on: 1) clusters of units and

partial interference and 2) a relevant key-associated p˚ipjq defined for each mj P M. Technical development

follows from previous work, ensuring that population (cluster) quantities related to treatment assignment are

confined to i “ 1, 2, . . . , P pP kq while population (cluster) quantities related to outcomes are confined to

j “ 1, 2, . . . ,MpMkq. Otherwise, theoretical underpinnings of the estimators extend trivially.

Specifically, we propose a refinement (to reflect the bipartite setting) of the simple estimator proposed in

[21] for the cluster-level average potential outcomes in (10). A corresponding estimator for the population-

level average potential outcome follows immediately, with asymptotically normal distribution as the number

of clusters K increases to infinity. This development follows existing work in [17, 12, 21], leading directly to

estimators for the population-level key-associatedM-indexed direct and indirect effects in (13) and (14) with

known asymptotic distributions.

The estimator for the cluster-level average potential outcome has the familiar form:

pY kpAi˚ “ a;αq “
1

|Mk|

ÿ

jPMk

πpAk
p´i˚q|Ai˚ “ a, αq

fA|W,X,kpAk|Wk,Xkq
IpAi˚ “ aqYj , (15)

with corresponding estimator for the population-average potential outcome:

pY pAi˚ “ a;αq “
1

K

K
ÿ

k“1

pY kpAi˚ “ a;αq (16)

The term fA|W,X,kpA
k|Wk,Xkq in the denominator of (15) represents the cluster-level propensity score for

the probability that the pi P P k receive the observed treatment vector Ak, conditional on the interventional-unit

and outcome unit covariates in the cluster, Wk and Xk. The term πpAk
p´i˚q|Ai˚ “ a, αq in the numerator of
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(15) represents the user-specified probability distribution of different cluster-level treatment allocations adher-

ing to the program α (specified in accordance with (2)).

Under the following assumptions and following work in [21, 12, 17]: pY kpAi˚ “ a;αq in (15) is unbiased

for Ȳ kpAi˚ “ a, αq in (10) when the cluster propensity score is known; unbiasedness of pY pAi˚ “ a;αq in

(16) for Ȳ pAi˚ “ a, αq follows trivially.

Assumption 1. Positivity. For k P t1, 2, . . . ,Ku, the probability of observing cluster treatment vector Ak “

ak given cluster covariates Wk,Xk is denoted by fA|W,X,kpA
k “ ak|Wk,Xkq and is positive for all ak P

Ap|P k|q.

Assumption 2. Ignorabililty For k P t1, 2, . . . ,Ku, the observed cluster treatment Ak is conditionally in-

dependent of the set of cluster potential outcomes Ykp¨q given the cluster covariates Wk,Xk, denoted as

Ak >Ykp¨q|Wk,Xk.

Under superpopulation (of clusters) versions of Assumption 1 and Assumption 2 as stated in [17], pY pAi˚ “

a, αq is consistent and asymptotically normal for the superpopulation counterpart to the above estimands for a

known or correctly specified and estimated parametric propensity score model (fA|W,X,kpA
k|Wk,Xkq)

6. Evaluating SnCR Systems on Medicare Hospitalizations in the

Presence of Pollution Transport

A previous analysis that simplified the bipartite structure by projecting to the level of P showed that SnCR

systems at coal- or gas-fired power plants reduce ambient air pollution in the areas immediately surrounding

power plants and in other “downwind” areas [17]. Here we conduct an analysis of SnCR on hospitalizations

with a more complete regard for the bipartite structure of the problem. Specifically, we estimate direct and

indirect effects (13) and (14) of SnCR installation on zip code hospitalizations for CVD among Medicare

beneficiaries.

The set of interventional units consists of 473 coal or natural gas burning power plants operating in the

continental U.S. during the summer months (June-August) of 2004. These power plants, with their characteris-

tics and important aggregate area-level characteristics (i.e., W) have been previously described in detail [16].

Power plants are partitioned into 50 clusters as in [17].
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The initial set of outcome units considered for this analysis corresponds to 37,240 U.S. zip codes, each with

a measured number of hospitalizations for cardiovascular disease (codes ICD-9 390 to 459) among Medicare

fee-for-service beneficiaries in 2005 (no outcome-unit covariates, X, are included in the analysis). Zip codes

were assigned to a cluster of power plants if the zip code centroid was located within the area defined by the

power plant locations’ convex hull and a buffer zone of 30km. If a zip code belonged to more than one cluster

based on this definition, it was assigned to the cluster that included the closest power plant. If a zip code was

not within 30km of the buffer zone of any power plant cluster, it was excluded from the analysis. This resulted

in a total of 23,458 zip codes representing the population of interest of areas of the U.S. that are considered

likely to be impacted by interventions at power plants (See Figure 2). Figure 3 shows the observed distribution

of the hospitalization outcome over the 23,458 zip codes.

For each zip code, mj , the key-associated power plant, p˚ipjq, is defined to be the power plant located

closest to the centroid of the zip code. Corresponding key-indexed direct and indirect effects thus cohere to

notions of intervening to control local pollution (e.g., from the closest plant) vs. those to control long-range

transported pollution from more distant upwind plants, which are important distinctions for development of

local and interstate (or regional) regulatory policies. Key-indexed direct and indirect effects were estimated

using the IPW estimator defined in Section 5.2. for values of α ranging from the 20th to the 80th percentile of

the observed proportion of treated power plants across the clusters. The propensity score model was specified

as a logistic regression adjusting linearly for power plant, weather, and demographic covariates and including

a cluster-specific random effect to match the previous analysis of [17]. Power plant characteristics include the

percent of total capacity at which a plant typically operates, the amount of fuel energy burned, an indicator

of Phase 2 participation in the Acid Rain Program, an indicator for whether a plant burns mostly gas fuel,

and indicators for the size of the plant in terms of number of generating units. Area-level characteristics

include ambient temperature, median household income, median house value, population per square mile,

and population percentages of high school graduates, residence in urban areas, white, black, and hispanic

populations, housing occupancy, poverty, and migration to the area within 5 years.

The numerator specifying counterfactual treatment allocation probabilities was specified as independent

Bernoulli assignments to treatment πpAk
p´i˚q|Ai˚ “ a, αq “

ź

pk‰iPTj

αAkp1 ´ αq1´Ak as in [21]. Results are

depicted in Figure 4. The direct effect is estimated to be negative for all values of α (achieving statistical signif-

icance at the 0.05 level for all α ě 0.1), implying that installation of SnCR at a zip code’s closest power plant
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leads to a significant reduction in number of cardiovascular hospitalizations at that location. Note that the direct

effect becomes less pronounced as α increases, indicating that installing SnCR on a zip code’s closest power

plant has a smaller impact on CVD hospitalizations when more upwind power plants also have SnCR installed.

The other two plots in Figure 4 depict estimates of the indirect effect IE0˚pα1, α2q for values α1 P t0.1, 0.4u.

These results represent expected changes in hospitalizations when the closest power plant does not have SnCR

and the propensity of upwind power plants to install SnCR shifts from α1 to α2. The decreasing trend in both

plots indicates that a higher proportion of SnCR among upwind plants leads to decreased CVD hospitalizations

when the closest power plant remains without SnCR. For example, a change in the propensity of upwind units

to install SnCR from 10% to 45.8% would lead to 56.4 (95% CI: 25.8´87.1) fewer hospitalizations on average

per zip code when the closest plant remains without SnCR.

Overall, the results of the analysis indicate the benefit of installing SnCR for reducing CVD hospitalizations

among Medicare beneficiaries with a careful account of how the effectiveness of controls installed at nearby

power plants interacts with interventions at upwind plants.

7. Discussion

We have introduced the new setting of bipartite causal inference with interference, which arises in a variety

of settings where interventions are enacted at one type of observational unit, outcomes of interest are defined

and measured at a distinct type of unit, and the complexities of exposure patterns lead outcomes to depend on

the treatments of many interventional units. The setting is particularly relevant to the study of air pollution

regulatory policy, where interventions occur at pollution sources (e.g., power plants), health outcomes are

measured at population locations (e.g., zip codes), and complex atmospheric processes and long-range pollution

transport lead to interference. Formalization of this setting represents an important added dimension to recent

work on interference that extends the formality of potential outcomes methods to settings that do not cohere

to the oft-considered setting of one level of observational unit and unit-to-unit outcome dependencies (e.g.,

infectious diseases or social networks).

Potential outcomes and causal estimands were formulated generally, drawing commonalities and distinc-

tions with existing work for interference. While the general development of estimands was designed to intro-

duce the possibilities of formalizing the bipartite interference problem, estimators were developed for only a
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Figure 4: Direct effect and indirect effect estimates and confidence intervals.

subset of possible estimands. For illustration and to motivate the use of the bipartite framework in an applied

problem, we ultimately employed estimators that rely on the assumption of partial interference and require that

interest lies in a single key-associated interventional unit for each outcome unit. The proposed estimators relied

heavily on existing work developed in the one-unit setting. Future research to expand beyond these simplified

estimators is clearly warranted, including formulations that go beyond the perspective of individual-average

potential outcomes averaged over specified allocation programs (e.g., as in [5]).

Even with the simplifications that led to the proposed estimators, the formalization of bipartite interference

and application of the simplified estimators in the context of the power plant evaluation represents an impor-

tant step in air pollution policy research that, to our knowledge, has only previously been considered in [17].

Long-range pollution transport according to atmospheric processes is ubiquitous to the study of pollution in-

terventions at point sources (e.g., power plants or factories), and formal methods for statistical evaluation are

lacking for such interventions. Despite the progress herein, the clustering and partial interference assumption
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employed in the analysis of SnCR systems is a nontrivial simplification of actual pollution transport, and pro-

duces only an approximate analysis of the effect of SnCR on Medicare CVD hospitalizations. Extensions to

more general interference patterns are essential, and a topic of ongoing work.
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