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Motivational setting

m In many applications, data naturally have an array or tensor structure

m For example, R x R x p array containing features measuring the strength
of connections between an individual's R brain regions

m Characterize the relationship between a tensor predictor and a scalar
outcome within a regression framework

m Scalar ~ Tensor
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Statistical approaches for tensor regression

dimensionality reduction

Estimation requires some type of parameter regularization or
Estimating coefficients with entry-specific penalization
(Cox and Savoy, 2003; Craddock et al., 2009)

Does not account for the array structure of the predictor
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Statistical approaches for tensor regression

Estimation requires some type of parameter regularization or
dimensionality reduction
Estimating coefficients with entry-specific penalization
(Cox and Savoy, 2003; Craddock et al., 2009)
Does not account for the array structure of the predictor
Use low-dimensional summaries of the tensor predictor
(Zhang et al., 2019; Zhai and Li, 2019)
Unsupervised, performance depends on number and choice
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Statistical approaches for tensor regression

Estimation requires some type of parameter regularization or
dimensionality reduction

Estimating coefficients with entry-specific penalization
(Cox and Savoy, 2003; Craddock et al., 2009)
Does not account for the array structure of the predictor

Use low-dimensional summaries of the tensor predictor
(Zhang et al., 2019; Zhai and Li, 2019)
Unsupervised, performance depends on number and choice
Estimate a coefficient tensor assuming a low-rank structure
(Zhou et al., 2013; Li et al., 2018; Guhaniyogi et al., 2017; Guha and Rodriguez, 2018;
Wang et al., 2018)
Attractive, can suffer if the true tensor is not low-rank
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Challenge 1

m Estimation of high-dimensional tensor model
m Respecting the predictor’s array structure
Challenge 2

m Low rank approximations can perform poorly

Our goal: Develop a tensor regression framework that
accommodates the predictor’s structure
adaptively expands away from low-rank
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Notation

m Y;: continuous outcome of unit ¢
m X;: K-mode tensor of dimensions p1, ps,
[Xiljrjoix =

Xijrja-ix
m Assume model

,PK With entries
where

Y; ,u+<XZ-,B)F+eZ

B is K-mode coefficient tensor of dimensions p1, pa,

- PK

= = = k= DA
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PARAFAC decomposition

A tensor B € RP1*P2X--PK can be written as

D
B=Y "5 e o]
d=1

for B,gd) € RPk. The minimum value of D is referred to as its rank.

m The (j1j2...JK) entry of B is equal to
X () (d) ()
Bj1j2---jK :le/BIjl/BQjQ ’BKJK

m Row ji along mode k has fixed importance to all coefficient entries
that include it

m Natural approximation of the coefficient tensor (Zhou et al., 2013; Guhaniyogi
et al., 2017)
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Block structure of the PARAFAC

Rank 1

Rank 3
m We refer to it as the hard PARAFAC
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Soft tensor regression

D
m Write B = Z B§d) o B(d)
d=1

o B with B,gd) equal dimension to B
= Now B; Zﬁﬁ”ﬂ(d). B, for j = (jr, jo.

-3 JK)

G. Papadogeorgou (Duke U.)

=] = = = a



Soft tensor regression

D
m Write B = Z B§d) o Béd) 0...0 B}?) with B,gd) equal dimension to B
d=1

2 ad) pld) o)
m Now Bj =) 315855 - Bicjr for j = (j1, 2,1 )
d=1 -~ =

m Hard PARAFAC can be written like this by setting 3

(d) _ . (d)
k?j - Fyk':jk
Ba,1,1)
Ba,12)
B ~ 5
B2y
oy |
B
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Soft PARAFAC structure

d d

Bi) ~ N(yi o7 )

m Hard PARAFAC-centered: E[B,[T,S,Z] = Y2 ~
(d)

()., (d)

Lj1 V252
represents overall importance of row ji

m Allows variation within the mode-£ slices

Ba,11)

Ba,1,2)

B
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Bayesian inference

B ~ N ()

kd'k’UI%C(d))
d d
7’(€7J?k ~ N(O’ T'VC(d)w’(%J)k )
d d
w ~ Brp(A\)?/2),

D LT (ay,by)

¢ ~ Dirichlet(a/ D,/ D, ... ,a/D)
o3 ~T(ag,bs)

7y: Overall variance

w,i{_?k: Row-specific variance

¢(D: Component variance scaling

o2 ¢(D: PARAFAC softening

Underlying hard PARAFAC prior from Guhaniyogi et al. (2017)
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Choosing the hyperparameters

m Prior coefficient variance V*

m Percentage of prior variance due to softening AV™*

Proposition 1
For a matrix predictor, if

263 _br [ V(1 -AV*)a,
(ax-1)(ax-2) ar C'(ar+1)

and

Ao V*(1-AV*)a, ar
E:\/ (Cl(a7+1)) {\/1_ ajl{l_(l_AV*)_l}_l}

then Var(B;) =V*, and AV = AV™*.
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Dependence on the underlying PARAFAC rank

m Softer is more robust to the choice of D than the hard PARAFAC
m Hard PARAFAC with D; can capture D; largest eigenvalues

m Softening the D1-PARAFAC can capture deviations arising from all
eigenvalues

«———— softening ——» <D+

<—D—>
2
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Full prior support and posterior consistency

For true coefficient tensor B for any rank:
Proposition 2

For e >0, mg(BZ(B°)) > 0 where BZ°(B°) = {B: max; |B? - Bj| <€}
Proposition 3

For any € > 0, there exists ¢* > 0 such that

(B: mjax\BgQ -Bj|<¢'} < {B:KL(B", B) <¢}

Proposition 3 — Weak consistency (Schwartz, 1965)

oy <3 = T 9ace
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Simulations

m Matrix predictor of dimension 32 x 32
m Sample size: 400

m True coefficient tensors:

10 1.0 10
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Simulation results

Truth
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Simulation conclusions

m Softer uses the low-rank structure of the PARAFAC when necessary,
and diverge from it when needed

m We evaluated:

MSE in coefficient estimatioon

Frequentist coverage of 95% credible intervals

Identification of important entries (sensitivity, specificity, FNR, FPR)
Predictive MSE

m FPR much lower for Softer than hard PARAFAC

m Simulations with increasing rank of true coefficient tensor
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Results from brain connectomics study

m We extended Softer to (semi-)symmetric tensors

m Extension to binary outcomes

Employed tensor regression to analyze the relationship between
m Features of structural brain connections, and

m 15 human traits (personality, motor, etc)

In the analysis
m Methods had similar predictive performance

m Up to 30% of the variance explained

m Softer identified important structural connections for predicting three
traits that agree with neuroscience literature
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