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Discussion of “Penalized Spline of Propensity Methods for Treatment Comparison”

Georgia Papadogeorgou and Fan Li

Department of Statistical Science, Duke University, Durham, NC

We congratulate Zhou, Elliott, and Little (ZEL hereon) for
providing an easy-to-implement and widely applicable method
for causal inference (PENCOMP). The method is grounded
on imputing the missing potential outcomes, and unites
the propensity score and outcome model approaches for
confounding adjustment. We regard the main advantage of this
method as its flexibility, namely, physically imputing the missing
potential outcomes allows one to estimate any causal estimand
of interest. This is in contrast to the popular weighting methods,
which usually only target at mean estimation. As shown in ZEL,
the flexibility is particularly desirable in complex settings such as
longitudinal treatments, making it attractive as an off-the-shelf
approach in applied work.

Below we discuss three conceptual and operational issues
that are fundamental to causal inference in longitudinal settings:
(i) target population and overlap, (ii) double robustness, and
(iii) the form of sequential ignorability. While ZEL has sup-
plied some insights on these sometimes thorny issues, we feel
the audience might benefit from a deeper and more focused
discussion.

1. Causal Estimand and the Target Population

The starting point of most causal studies is to define a causal
estimand—a contrast of the potential outcomes of the same set
of units under different treatments. Causal estimands are tied to
the specification of the target population over which the contrast
of potential outcomes is considered. The most common causal
estimand is the average treatment effect (ATE), which is also the
target in ZEL. We find that the automatic focus on ATE often
leads researchers to overlook a more fundamental question:
What target population is the causal estimand defined on, and
is that population scientifically interpretable? For example, by
focusing on the ATE, researchers make the implicit assumption
that the study sample is representative of a wider population of
intrinsic interest. However, many observational studies rely on
“convenience samples” that result from ad hoc and ambiguous
inclusion and exclusion criteria (e.g., access to treatment). These
samples usually do not represent a scientifically interpretable
target population. Moreover, differences in inclusion/exclusion
criteria across datasets could lead to large differences in esti-
mated causal effects, since estimated quantities correspond to
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contrasts of potential outcomes over different target popula-
tions.

Below, we discuss how weight trimming in weighting
approaches, and dropping observations in matching methods
and PENCOMP, implicitly change the target population. As a
related point, we discuss that imprecise weighting estimators are
not solely a statistical inefficiency issue, but they should instead
be viewed as an indication of a poorly specified target population
and a corresponding malformed causal estimand. We argue that
limited overlap should be addressed by defining a meaningful
target population over which efficient inference can be made.

The most popular method for drawing causal effects in
longitudinal treatments is the inverse probability of treatment
weighting (IPTW), originating from the Horvitz–Thompson
estimator in sample survey. In causal inference the main idea
of weighting is to reweigh the treatment and control groups to
create a pseudo-population, resembling the target population,
where the two groups are balanced in observed covariates.
IPTW and its augmented version (AIPTW) are often criticized
for leading to estimates with high variance in the presence
of extreme propensity scores. A common remedy of this is
trimming of the extreme scores (e.g., Crump et al. 2009). The
other popular general approach to causal inference is matching
on the propensity score. In one of its forms, matching leads
to matched pairs of observations with similar covariates and
opposite observed treatment levels. Observations with extreme
propensity score estimates are usually dropped from the analysis
since no sufficiently similar units of the opposite treatment level
can be found.

The above two approaches of dealing with extreme propen-
sity scores in weighting and matching are of similar flavor and
are rooted in the issue of limited overlap, also known as violation
to the positivity assumption. Both lead to estimation of treat-
ment effects over populations that are different from the target
one, and can be hard to interpret. For example, dropping treated
units in propensity score matching leads to the estimation of the
ATE over only a subset of the treated units, the ones that were
matched. Indeed, Rubin (2001) claims that in some cases it is
not possible to draw causal conclusions from a dataset without
relying heavily on outcome modeling assumptions, and such
efforts should be avoided in search of a more comprehensive and
representative dataset.
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Longitudinal treatments magnify the issue of limited over-
lap. Similarly to matching methods, PENCOMP drops obser-
vations with extreme propensity scores. Specifically, ZEL sug-
gested excluding observations based on a sequential overlap-
ping estimated propensity score condition. Specifically, if Zit , Zit
denote the observed treatment and the observed treatment his-
tory of unit i at time point t, and zt , zt denote potential values of
that treatment, let pi(zt) denote the estimated propensity score
for unit i to have received zt . Then, the sets At , Bt discussed in
ZEL correspond to St(zt), St(0t) where

St(zt) =
{

i : pi(zt) ∈
(

min
j∈Ut

pj(zt), max
j∈Ut

pj(zt)

)}
,

Ut = {
j : Zjt = zt

}
.

Inference for a T-dimensional treatment proceeds over the units
in S1(z1)∩S1(01)∩· · ·∩ST(zT)∩ST(0T). Therefore, the obser-
vations maintained are those with longitudinal propensity score
estimates within the range of the propensity score estimates for
units which actually received the treatment path of interest. Such
trimming of observations renders it hard (if not impossible) to
characterize the population to which the results generalize to.
The issue of limited overlap grows for a growing number of
treatment time points T. The authors avoid to directly address
that by considering only year-long intervals.

Even though dropping observations with extreme propensity
scores in PENCOMP leads to a change in the target popula-
tion (and therefore the causal estimand), ZEL motivated their
approach as a way to address the imprecision of weighting
estimators. However, we believe that extreme propensity scores,
large weights, and imprecise weighting estimators should be
viewed as an indication of limited overlap, where at least one
of the treatment levels is unlikely to be assigned to units with a
specific covariate profile. Therefore, imprecision of estimators
should not be viewed as lack of efficiency, rather than as a
representation of limited information about the treatment effect
for a subset of the target population.

The issue of lack of overlap is particularly hard to tackle
in longitudinal treatments. Positivity of all possible treatment
vectors, rather than a simple binary treatment, for all units in the
sample is likely to be violated, leading to estimands representing
the whole population with limited interpretability. Estimands
like the ATE of head-to-head comparisons of treatment vectors
could lead to vast generalizability doubts when part of the pop-
ulation is unlikely to receive one or both of the compared treat-
ment vectors. Li, Morgan, and Zaslavsky (2018) provide a step—
the overlap weights—toward defining estimands over popula-
tions resembling an interpretable part of the sample, namely,
the subpopulation with the most overlap in observed covariates.
The overlap weights are proportional to the probability of being
assigned to the opposite group (i.e., e(x) for control units and
1−e(x) for treated units), and thus automatically avoid the high
variance problem of IPTW. Indeed, the overlap weights mini-
mize the asymptotic variance of the nonparametric estimator of
the weighted ATE among the general class of balancing weights
(which includes the IPTW and trimming as special cases). More
importantly, as the overlap weights move the focus to the target
population of the most overlap, arguably they lead to more gen-
eralizable causal estimates that are replicable across datasets. In

summary, we feel that exploring alternative weighting schemes
(and thus changing the target estimands) is a promising direc-
tion in causal inference with longitudinal treatments.

2. Double-Robustness

In observational studies, the true propensity score and outcome
models are unknown and need to be estimated. Double-
robustness is an attractive property of an estimator because
it arguably gives the analysts two chances to “get it right."
The AIPTW estimator is doubly robust in the sense that it is
consistent if either the outcome model or the propensity score
model is correctly specified, but not necessarily both. Double-
robustness in PENCOMP is more complicated. Specifically,
PENCOMP postulates the outcome model as the sum of two
components: (a1) a nonparametric function (e.g., penalized
splines) of the propensity score, and (a2) a parametric function
of the propensity score and covariates. PENCOMP is doubly
robust in the sense that it is consistent if the outcome model
is correctly specified, or both the propensity score model and
the outcome–propensity relationship is correct. Therefore,
correct specification of the propensity score model alone does
not guarantee the estimator to be consistent. In this sense,
the double-robustness property of PENCOMP is weaker than
that of AIPTW, which may render it less attractive in some
settings.

Further, modeling the outcome–propensity relationship has
important interpretability caveats. Specifically, it is not clear
how one can conceive an outcome-generating mechanism
that uses the propensity score as a predictor, instead of the
covariates directly. Using a non or semiparametric model as
splines does provide flexibility, but it does not overcome the
challenge of specifying more complex relationships such as
covariate–propensity interactions. The reliance of PENCOMP
on the outcome–propensity score relationship is evident in the
simulation study in ZEL. PENCOMP outperforms AIPTW
in situations of “high confounding,” that is, large covariate-
treatment associations. In such cases, the presence of strong
predictors of the treatment intensifies the issue of limited
overlap, leading to high variance of weighting methods. Instead,
PENCOMP includes the propensity score as a predictor in
the outcome model, and implicitly extrapolates based on the
outcome–propensity score relationship.

Therefore, PENCOMP depends on the correct specification
of at least part of the outcome model. This raises concerns
related to the approach’s performance in the most prevalent
and worst-case scenario that both the outcome and the
propensity score model are wrong. Our own experience
has suggested that misspecification of the outcome model
leads to larger bias in empirical studies (Li, Zaslavsky, and
Landrum 2013) than methods based on the propensity score.
The reliance of PENCOMP on the outcome–propensity
relationship indicates that misspecification of this component
(in addition to the rest) may lead to worse results than weighting
approaches.

The above discussions lead us to ask: why not directly postu-
late a flexible nonparametric outcome model such as Gaussian
process or tree-based models? Nonparametric estimation leads
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Figure 1. Directed acyclic graph of two point treatment.

to slower rates of convergence if only one model is correctly
specified, but it is more likely to lead to consistent estimators.
Studies have also shown that adding the estimated propensity
score as an additional predictor in the outcome model improves
efficiency. Therefore, it might be more attractive to specify the
outcome model in PENCOMP as a nonparametric model of
covariates and the estimated propensity score. Compared to
the current “two-stop” approach of PENCOMP where one has
to specify the outcome model as the sum of one parametric
and one nonparametric component, we feel that this “one-
stop” procedure is more straightforward conceptually and easier
to implement practically. Robustness of such estimators is
directly supplied by the nonparametric outcome model, while
only efficiency is supplied by correctly specified propensity
scores.

3. The Form of Sequential Ignorability

The literature on causal inference with longitudinal treatments
has nearly exclusively assumed sequential ignorability. To facili-
tate discussion, Figure 1 shows the casual directed acyclic graph
(DAG) of a two time-point treatment. For this DAG, and follow-
ing ZEL’s notation, sequential ignorability states:

Assumption 1 (Sequential ignorability).

(a) {Yz1z2 , Xz1
2 , for all z1, z2} ⊥ Z1 | X1

(b) {Yz1,z2 , for all z1, z2} ⊥ Z2 | Z1, X1, X2.

That is, the treatment assignment at time t is ignorable
conditional on the observed history, which includes the baseline
covariates, past treatments, and the observed intermediate out-
comes until time t−1. Following Assumption 1, analysts usually
include the observed history in the propensity score model, and
check balance of the distributions of those variables between
treated and control units. For example, ZEL checked the stan-
dardized difference of means of these variables between treat-
ment groups at each time point; in the IPTW-based marginal
structural models, analysts would check the weighted standard-
ized difference of means of these variables.

We stress that sequential ignorability is not the only possible
assignment mechanism in longitudinal treatments. An alterna-
tive assumption particularly relevant to PENCOMP is the latent
sequential ignorability assumption proposed in Mattei, Riccia-
rdi, and Mealli (2017), where the conditioning set includes the
potential outcomes of the intermediate variables.

Assumption 2 (Latent sequential ignorability).

(a) {Yz1z2 , Xz1
2 , for all z1, z2} ⊥ Z1 | X1

(b) {Yz1,z2 , for all z1, z2} ⊥ Z2 | Z1, X1, X2, {X0
2, X1

2}.

Assumption 2 is weaker than Assumption 1 in that the con-
ditioning set in 2 is larger. The joint potential outcomes of the
intermediate variable {X0

2, X1
2} in Assumption 2(b) are essen-

tially principal strata (Frangakis and Rubin 2002). Mattei, Ric-
ciardi, and Mealli (2017) discuss that the latent sequential ignor-
ability assumption allows the treatment assignment to depend
on unmeasured factors reflected in the principal strata, which is
arguably more plausible in many applications.

PENCOMP explicitly imputes the missing potential out-
come (and therefore the principal strata) at all time points. For
this reason, we feel one potential advantage of PENCOMP is
to assume the weaker latent sequential ignorability than the
conventional sequential ignorability. In fact, assuming latent
sequential ignorability, analysts could include the imputed inter-
mediate values in both the outcome model and the propensity
score model at future time points. Moreover, covariate balance
of the units with different observed treatment vectors should be
checked based on baseline covariates, the observed intermediate
outcome, and the potential values of the intermediate variables.

In situations of a treatment applied at many time points, the
conditioning sets under both assumptions include the whole
treatment and covariate history. However, the conditioning set
under latent sequential ignorability further includes the poten-
tial values of all past intermediate outcomes. Assuming sequen-
tial ignorability over latent sequential ignorability could rep-
resent an assumption aiming at dimension reduction, since
specification of the propensity score and balance check would
be performed over a smaller set of variables. If unmeasured
confounding is believed to be present, an alternative approach to
dimension reduction grounded on latent sequential ignorability
could make a Markovian assumption, where the conditional
independence at time point t requires only baseline covariates
and (observed or potential) intermediate outcomes at time t−1.
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