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Abstract
Interference arises when an individual’s potential outcome depends on the individ-

ual treatment level, but also on the treatment level of others. A common assumption

in the causal inference literature in the presence of interference is partial interfer-

ence, implying that the population can be partitioned in clusters of individuals whose

potential outcomes only depend on the treatment of units within the same cluster.

Previous literature has defined average potential outcomes under counterfactual sce-

narios where treatments are randomly allocated to units within a cluster. However,

within clusters there may be units that are more or less likely to receive treatment

based on covariates or neighbors’ treatment. We define new estimands that describe

average potential outcomes for realistic counterfactual treatment allocation programs,

extending existing estimands to take into consideration the units’ covariates and

dependence between units’ treatment assignment. We further propose entirely new

estimands for population-level interventions over the collection of clusters, which cor-

respond in the motivating setting to regulations at the federal (vs. cluster or regional)

level. We discuss these estimands, propose unbiased estimators and derive asymptotic

results as the number of clusters grows. For a small number of observed clusters, a

bootstrap approach for confidence intervals is proposed. Finally, we estimate effects

in a comparative effectiveness study of power plant emission reduction technologies

on ambient ozone pollution.
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1 INTRODUCTION

Most causal inference literature assumes that a unit’s poten-

tial outcome depends solely on its treatment, and not on the

treatments of other units in the population. However, this

assumption is often not reasonable. Perhaps the most clas-

sical example arises in vaccination studies (Ali et al., 2005;

Hudgens and Halloran, 2008) where a unit’s disease status

depends on their own vaccination status but also on the vac-

cination status of others. The presence of interference can

lead to estimated quantities from familiar estimators that are

misleading (Sobel, 2006) and lack clear causal interpretation

(Tchetgen Tchetgen and VanderWeele, 2012), but can also

introduce new estimands of intrinsic scientific interest.

Sobel (2006) defined estimands assuming partial inter-
ference referring to situations where the population can be

partitioned into clusters (groups) for which a unit’s poten-

tial outcomes depend only on the treatment of units within

the same cluster. Hudgens and Halloran (2008) formalized

causal inference in this setting and in the context of two-stage

randomization designs, extended to observational studies by

Tchetgen Tchetgen and VanderWeele (2012).
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In order to continue development in the context of obser-

vational studies, we highlight a key distinction that arises

when formulating average potential outcomes in the presence

of interference. We use the term treatment allocation strat-
egy to refer to a process giving rise to either observed or

hypothesized vectors of treatment assignments. The observed
treatment allocation strategy refers to that which gives rise

to observed treatments. The counterfactual treatment alloca-
tion strategy refers to how treatments may have been assigned

in some hypothesized counterfactual world for which causal

contrasts are considered. This distinction between observed

and counterfactual treatment allocation programs helps illu-

minate that existing causal estimands are limited to coun-

terfactual treatment allocation programs that remain agnos-

tic with regard to covariate information. These estimands

ignore the possible role of unit-level covariates that relate

to treatment adoption, implicitly assuming an intervention

manipulating each individual unit’s treatment propensity.

In many settings, however, treatment allocations corre-

sponding to unit-level manipulation are difficult to conceive.

For example, policy interventions may be designed to increase

the regional prevalence of a treatment without direct con-

trol over the individual treatment propensity. In such settings,

individual treatment adoption might generally depend on unit-

level covariates or the treatment status of neighboring units.

To address such settings, we develop new causal estimands

anchored to counterfactual treatment allocations that corre-

spond to realistic regional interventions. These interventions

are conceived at the cluster level, where a particular allocation

strategy dictates the cluster-average propensity of receiving

treatment without directly specifying individual-level treat-

ment propensities. Note that, in focusing on new estimands for

covariate-dependent counterfactual treatment allocation pro-

grams, our work has commonalities with independent work

in Barkley et al. (2017). Defining estimands for realistic treat-

ment allocations has received limited attention in the causal

inference literature with an exemption found in van der Laan

and Petersen (2007).

In addition to extending existing estimands to accom-

modate realistic regional treatment allocations, this work

provides entirely novel estimands motivated by the desire

to investigate interventions which take place at the popu-

lation (vs. regional) level. These estimands are useful for

evaluating policies that change the distribution of cluster-

average propensities of treatment by, for example, providing

a population-wide incentive to adopt treatment.

Definition of the new causal estimands described above

is accompanied here by new estimators, derivation of cor-

responding asymptotic properties as the number of clusters

grows, and a bootstrap approach to inference when the num-

ber of observed clusters is small. Related work can be found

in Ferracci et al. (2014), in Liu and Hudgens (2014) where

asymptotic results are derived for growing number of clusters

or number of individuals within clusters, in Perez-Heydrich

et al. (2015) where large sample variance estimators for the

estimator of Tchetgen Tchetgen and VanderWeele (2012) are

derived, and in Liu et al. (2016) where estimands and esti-

mators are extended to a network where partial interference

does not hold, but asymptotic results are derived under the

assumption of partial interference.

The motivating context for this work is the evaluation of

interventions to limit harmful pollution from power plants.

The movement of air pollution through space leads to inter-

ference: intervening on one power plant can affect the air

pollution surrounding nearby power plants. Importantly, pol-

lution regulations often work by incentivizing regions of

power plants to adopt certain technologies without mandating

treatment adoption at each individual plant, which, in reality,

is heavily influenced by individual power plant characteristics

(e.g., size). In addition to regional strategies, federal pollution

regulations can provide national incentives for power plants

to install technologies, motivating the new population-level

estimands.

The new estimators are deployed here to an analysis

of U.S. power plants investigating the comparative effec-

tiveness of Selective Catalytic or non-Catalytic Reduction

(SCR/SNCR) systems relative to other strategies for reducing

ambient ozone pollution. A preliminary investigation of these

same data in Papadogeorgou et al. (2018) ignored interfer-

ence and indicated that these systems causally reduced NO𝑥

emissions (an important precursor to ozone pollution) but esti-

mated an effect on ambient ozone very close to zero. The

analysis here to address the possibility of interference pro-

duces meaningfully different results that are more consistent

with the literature relating NO𝑥 emissions to ambient ozone

pollution.

2 ESTIMANDS UNDER PARTIAL
INTERFERENCE

We adopt the notation used in Tchetgen Tchetgen and

VanderWeele (2012). Let 𝑁 be the number of clus-

ters, and 𝑛𝑖 the number of units in cluster 𝑖, 𝑖 ∈
{1, 2,… , 𝑁}. Furthermore, let 𝑨𝑖 = (𝐴𝑖1, 𝐴𝑖2,… , 𝐴𝑖𝑛𝑖 ) ∈
(𝑛𝑖) denote the cluster treatment vector, and 𝑨𝑖,−𝑗 =
(𝐴𝑖1, 𝐴𝑖2,… , 𝐴𝑖𝑗−1, 𝐴𝑖𝑗+1,… , 𝐴𝑖𝑛𝑖) ∈ (𝑛𝑖 − 1) the treat-

ment of all units in cluster 𝑖 apart from unit 𝑗, where (𝑛) =
{0, 1}𝑛. Furthermore, let 𝑳𝑖𝑗 be a vector of individual and

cluster-level covariates, and 𝑳𝑖 = (𝑳𝑖1,𝑳𝑖2,… ,𝑳𝑖𝑛𝑖) be the

collection of covariates of all units within cluster 𝑖. Under

the assumption of partial interference, the potential outcome

of unit 𝑗 in cluster 𝑖 may depend on the treatment of units

in cluster 𝑖, but not on the treatment of units in different

clusters. For every 𝑖 we postulate the existence of group 𝑖’s
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potential outcomes 𝒀𝑖(⋅) = {𝒀𝑖(𝒂𝑖),𝒂𝑖 ∈ (𝑛𝑖)}, where

𝒀𝑖(𝒂𝑖) = (𝑌𝑖1(𝒂𝑖), 𝑌𝑖2(𝒂𝑖),… , 𝑌𝑖𝑛𝑖 (𝒂𝑖)).

2.1 Average potential outcome
We define the individual average potential outcome for a

counterfactual treatment allocation strategy with two features:

(1) treatment assignment for units within a cluster is unlikely

to be independent, and (2) individual covariates can be pre-

dictive of a unit’s treatment probability. Let 𝑃𝛼,𝐿 represent the

(arbitrarily specified) counterfactual treatment allocation pro-

gram, specified intentionally to depend on covariates and/or

allow correlated assignments, and whose important features

are represented by parameters 𝛼. For the purpose of this paper,

we consider 𝛼 to represent the cluster-average propensity of

treatment.

The individual average potential outcome for unit 𝑗 in

cluster 𝑖 is defined as:

𝑌
𝐿

𝑖𝑗(𝑎; 𝛼) =
∑

𝒔∈(𝑛𝑖−1)
𝑌𝑖𝑗(𝐴𝑖𝑗 = 𝑎,𝑨𝑖,−𝑗 = 𝒔)

𝑃𝛼,𝐿(𝑨𝑖,−𝑗 = 𝒔|𝐴𝑖𝑗 = 𝑎,𝑳𝑖), (1)

representing the unit’s expected outcome in the counterfac-

tual world where treatment is assigned according to 𝑃𝛼,𝐿, but

treatment of unit 𝑗 is set to 𝑎. The group average potential out-

come for cluster 𝑖 is defined as 𝑌
𝐿

𝑖 (𝑎; 𝛼) =
1
𝑛𝑖

𝑛𝑖∑
𝑗=1

𝑌
𝐿

𝑖𝑗(𝑎; 𝛼).

Assuming that clusters are observed from a super-population

according to a distribution 𝐺0, the population average poten-

tial outcome is defined as 𝑌
𝐿
(𝑎; 𝛼) = 𝐸𝐺0

{
𝑌
𝐿

𝑖 (𝑎; 𝛼)
}
. Note

that these estimands are well-defined for any fixed choice

of 𝑃𝛼,𝐿. Definitions of the group and population average

potential outcomes implicitly require that, when a cluster is

observed, data are collected on all the units belonging to that

cluster.

In Web Appendix E, we discuss the sample average poten-

tial outcome defined in the literature as the (weighted) average

of the observed clusters’ group average potential outcomes.

There, we provide an argument for a definition (and corre-

sponding estimator) which gives equal-weight to all clusters

irrespective of their cluster size.

2.2 The counterfactual treatment allocation
in existing literature
The above development has left unspecified the term 𝑃𝛼,𝐿 in

(1) providing relative weights to different cluster treatment

vectors in the individual average potential outcomes. Speci-

fying 𝑃𝛼,𝐿(𝒂𝑖|𝑳𝑖) =
𝑛𝑖∏
𝑗=1

𝛼𝑎𝑖𝑗 (1 − 𝛼)1−𝑎𝑖𝑗 would correspond to

the estimands in Tchetgen Tchetgen and VanderWeele (2012)

and Perez-Heydrich et al. (2015) that give equal probability to

all cluster treatment vectors with the same number of treated

units, irrespective of which those units are. For this choice

of 𝑃𝛼,𝐿, the estimands represent quantities in a counterfactual

world where individual treatment propensity can be manipu-

lated and units are assigned to treatment independently and

with equal probability 𝛼.

2.3 Realistic counterfactual treatment
allocation program
However, in some situations, counterfactual treatment allo-

cations can only be realistically conceived to depend on

covariates or incorporate correlation between treatment of

units in the same cluster. In the study of power plant inter-

ventions, the decision of whether to “treat” a power plant is at

the discretion of the power company and heavily influenced by

power plant covariates. Therefore, a hypothesized counterfac-

tual treatment allocation is realistic only when such covariates

are incorporated. For example, consider the covariate ‘heat

input’, a proxy for the size of the power plant, and let 𝐿𝑖𝑗 be

the heat input of power plant 𝑗 in cluster 𝑖. One specification

of a counterfactual treatment allocation strategy that would

acknowledge that different-sized power plants are more or less

likely to adopt treatment is:

logit𝑃𝛼,𝐿(𝐴𝑖𝑗 = 1|𝐿𝑖𝑗) = 𝜉𝛼𝑖 + 𝛿𝐿𝑖𝑗 , (2)

for some fixed value of 𝛿, and 𝜉𝛼
𝑖

such that

(𝑛−1
𝑖
)
𝑛𝑖∑
𝑗=1

expit
(
𝜉𝛼
𝑖
+ 𝛿𝐿𝑖𝑗

)
= 𝛼. The value 𝛿 could be

specified according to knowledge of how the size of the

power plant is expected to impact the propensity to adopt

treatment. For 𝛿 = 0 the estimands coincide with the ones for

independent Bernoulli counterfactual treatment allocations

found in Tchetgen Tchetgen and VanderWeele (2012). Note

that the covariates included in the counterfactual treatment

allocation are at the discretion of the investigator based on

judgments about which allocations might correspond to the

policies of interest.

Based on (2), the probability of the cluster treatment vec-

tor under the counterfactual treatment allocation 𝑃𝛼,𝐿(𝑨𝑖 =
𝒂𝑖|𝑳𝑖) could be fully specified by hypothesizing that, in the

counterfactual world, the 𝐴𝑖𝑗’s are conditionally independent

given 𝑳𝑖, and 𝐴𝑖𝑗 is conditionally independent of 𝑳𝑖,−𝑗 given

𝐿𝑖𝑗 . Then, 𝑃𝛼,𝐿(𝑨𝑖 = 𝒂𝑖|𝑳𝑖) =
∏𝑛𝑖
𝑗=1 𝑃𝛼,𝐿(𝐴𝑖𝑗 = 𝑎𝑖𝑗|𝐿𝑖𝑗)

which, in turn, specifies 𝑃𝛼,𝐿(𝑨𝑖,−𝑗 = 𝒔|𝐴𝑖𝑗 = 𝑎,𝑳𝑖) for all

𝒔 ∈ (𝑛𝑖 − 1) giving relative weights in the specification of

the individual average potential outcome (1). Based on this

specification of 𝑃𝛼,𝐿, the estimands of interest correspond to

quantities in a hypothesized world where treatment within a

cluster is assigned independently across units with treatment

propensity that depends on 𝐿𝑖𝑗 , but is on average equal to 𝛼.
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Alternatively, a counterfactual treatment allocation strat-

egy could incorporate dependence of treatments of nearby

units by, for example, including a spatial random effect in

𝑃𝛼,𝐿. A data-driven way to choose 𝑃𝛼,𝐿 is presented in Section

6.

2.4 Direct and indirect effects
Contrasts of average potential outcomes can characterize how

treatment affects the outcome of interest. For counterfactual

allocation strategy 𝑃𝛼,𝐿, direct effects represent contrasts in

average potential outcomes when only the individual treat-

ment changes. On the other hand, indirect effects (also known

as spillover effects) contrast average potential outcomes for a

fixed level of individual treatment, but different specification

of the parameter 𝛼 governing 𝑃𝛼,𝐿. For that reason, indirect

effects represent expected changes in potential outcomes for

changes only in the “treatment of neighbors”, and they consti-

tute a measure of interference. Based on the average potential

outcomes defined above, one can define the individual direct

effect as 𝐷𝐸𝐿
𝑖𝑗
(𝛼) = 𝑌

𝐿

𝑖𝑗(1; 𝛼) − 𝑌
𝐿

𝑖𝑗(0; 𝛼), and the corre-

sponding group and population direct effects as 𝐷𝐸𝐿
𝑖
(𝛼) =

𝑌
𝐿

𝑖 (1; 𝛼) − 𝑌
𝐿

𝑖 (0; 𝛼), and 𝐷𝐸𝐿(𝛼) = 𝑌
𝐿
(1; 𝛼) − 𝑌

𝐿
(0; 𝛼) =

𝐸𝐺0
{𝐷𝐸𝐿

𝑖
(𝛼)} accordingly. Similarly, the individual indirect

effect is specified as 𝐼𝐸𝐿
𝑖𝑗
(𝛼1, 𝛼2) = 𝑌

𝐿

𝑖𝑗(0; 𝛼2) − 𝑌
𝐿

𝑖𝑗(0; 𝛼1),
based on which group and population indirect effects can be

defined. Indirect effects could be alternatively specified for

individual treatment assignment 𝑎 = 1, but here our focus

is on the effect of neighbors’ treatment in the areas sur-

rounding untreated power plants. Further, total effects can

be defined as the sum of direct and indirect effects, while

similar development can lead to the definition of overall

effects as contrasts of the individual average overall potential

outcomes 𝑌
𝐿,𝑂

𝑖𝑗 (𝛼) =
∑
𝒔∈(𝑛𝑖) 𝑌𝑖𝑗(𝒔)𝑃𝛼,𝐿(𝒔|𝑳𝑖). The overall

effects (and corresponding estimators) are discussed in detail

in Web Appendix G.

3 POPULATION-LEVEL
COUNTERFACTUAL
DISTRIBUTION OF
CLUSTER-AVERAGE PROPENSITY
OF TREATMENT

Development in Section 2 pertained to estimands that fix the

cluster-average propensity of treatment, 𝛼, corresponding to

counterfactual worlds were one intervenes at the level of the

cluster but units within the cluster choose their own treatment.

Here we develop completely new estimands for settings where

the cluster average propensity of treatment is not fixed to a

specific value 𝛼, but arises from a hypothesized distribution

of cluster-level propensities.

Such estimands correspond to interventions that occur at

an administrative level higher than the cluster. For example,

a federal regulation targeting all clusters might incentivize

increased treatment coverage without enforcing a specific

average propensity of treatment for any particular geographic

area, leading to an overall shift in the distribution of cluster

average propensity of treatment from some distribution 𝐹 1
𝛼 to

𝐹 2
𝛼 , like in Figure 1.

Let 𝐹𝛼(⋅) denote a hypothesized distribution

of cluster-average propensity of treatment. Then,

define the 𝐹𝛼-individual average potential outcome as

𝑌
𝐿

𝑖𝑗(𝑎;𝐹𝛼) = ∫ 𝑌 𝐿𝑖𝑗(𝑎; 𝛼) d𝐹𝛼(𝛼). Thus, 𝑌
𝐿

𝑖𝑗(𝑎;𝐹𝛼) describes

the average potential outcome of unit 𝑗 in cluster 𝑖, for

cluster average propensity of treatment arising from 𝐹𝛼 and

individual treatment 𝑎. Consequently, the 𝐹𝛼-group and

population average potential outcomes are defined as

𝑌
𝐿

𝑖 (𝑎;𝐹𝛼) =
1
𝑛𝑖

𝑛𝑖∑
𝑗=1

𝑌
𝐿

𝑖𝑗(𝑎;𝐹𝛼), (3)

and

𝑌
𝐿
(𝑎;𝐹𝛼) = 𝐸𝐺0

{
𝑌
𝐿

𝑖 (𝑎;𝐹𝛼)
}
, (4)

accordingly. We focus on the contrast of 𝐹𝛼-population aver-

age potential outcomes for hypothesized distributions of

cluster-average propensity of treatment 𝐹 1
𝛼 and 𝐹 2

𝛼 ,

𝐼𝐸𝐿(𝐹 1
𝛼 , 𝐹

2
𝛼 ) = 𝑌

𝐿
(0;𝐹 2

𝛼 ) − 𝑌
𝐿
(0;𝐹 1

𝛼 ). (5)

Such estimands are of primary interest in the evaluation

of air pollution policies, since 𝐼𝐸𝐿(𝐹 1
𝛼 , 𝐹

2
𝛼 ) represents the

expected change in air pollution concentration surrounding

control units for a federal intervention to increase emission

control technology coverage. Direct effect estimands based

on the 𝐹𝛼-population average potential outcome could also

be defined as 𝐷𝐸(𝐹𝛼) = 𝑌
𝐿
(1;𝐹𝛼) − 𝑌

𝐿
(0;𝐹𝛼), but are not

pursued here.

FIGURE 1 Distributions of cluster average propensity of treatment.

A federal intervention might target the increase of cluster treatment cov-

erage targeting a shift in the distribution of cluster average treatment

propensity from 𝐹 1
𝛼

to 𝐹 2
𝛼

.
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4 ESTIMATING THE
POPULATION AVERAGE
POTENTIAL OUTCOME

For a fixed choice of 𝑃𝛼,𝐿, we provide estimators of the

population average potential outcome 𝑌
𝐿
(𝑎; 𝛼), unbiasedness

and consistency results, and derive the asymptotic distribu-

tion when the number of clusters increases to infinity for

a known or estimated (and correctly specified) parametric

cluster-propensity score model (defined below). These results

are used to derive estimators (and their asymptotic proper-

ties) for the estimands in Section 2.4 and the population level

estimands in Section 3. Asymptotic results are derived to sim-

plify inference, since analytic finite sample unbiased variance

estimators cannot be derived without additional assumptions

on the interference structure (Hudgens and Halloran, 2008).

For finite sample confidence intervals, we discuss a bootstrap

approach. Proofs are in Web Appendix C.

We start by making the consistency of potential out-

comes assumption, and cluster-level positivity and conditional
ignorability assumptions:

Assumption 1. Consistency of potential outcomes. 𝑌𝑖𝑗 =
𝑌𝑖𝑗(𝑨𝑖) with probability 1.

Assumption 2. Positivity. There exists 𝜌 > 0 such that the

probability of observing cluster treatment vector 𝒂𝑖 given

cluster covariates𝑳𝑖, 𝑓𝑨|𝑳,𝑖(𝑨𝑖 = 𝒂𝑖|𝑳𝑖) > 𝜌with probability

1. 𝑓𝑨|𝑳,𝑖 is the cluster-propensity score.

Assumption 3. Conditional ignorability. For 𝐺0, 𝑨𝑖 ⟂⟂
𝒀𝑖(⋅)|𝑳𝑖.

These assumptions are adaptations of standard assump-

tions required for causal inference. A crucial difference is that

in settings of partial interference these assumptions are made

at the level of the cluster, rather than at the level of the indi-

vidual. Note that the covariates 𝑳𝑖 in Assumption 3 do not

need to coincide with the ones included in the counterfactual

treatment allocation 𝑃𝛼,𝐿.

The inclusion of cluster subscript 𝑖 in the notation for

𝑓𝑨|𝑳,𝑖 depends on the assumed form of the propensity score.

In the analysis of clustered data, a cluster-specific random

intercept is often included in the propensity score model (as

will be discussed in Section 6.1), making the dependence of

𝑓𝑨|𝑳,𝑖 on 𝑖 explicit.

4.1 Estimators of the group and population
average potential outcome

Let 𝑌 𝐿
𝑖
(𝑎; 𝛼) = 1

𝑛𝑖

∑𝑛𝑖
𝑗=1

𝑃𝛼,𝐿(𝑨𝑖,−𝑗 |𝐴𝑖𝑗=𝑎,𝑳𝑖)
𝑓𝑨|𝑳,𝑖(𝑨𝑖|𝑳𝑖) 𝐼(𝐴𝑖𝑗 = 𝑎)𝑌𝑖𝑗 , and

𝑌 𝐿(𝑎; 𝛼) = 1
𝑁

∑𝑁
𝑖=1 𝑌

𝐿
𝑖
(𝑎; 𝛼). For the true cluster propen-

sity score 𝑓𝑨|𝑳,𝑖(⋅|𝑳𝑖) and if Assumptions 2 and 3 hold,

𝑌 𝐿
𝑖
(𝑎; 𝛼) is unbiased for 𝑌

𝐿

𝑖 (𝑎; 𝛼). Unbiasedness is derived

with respect to the distribution of the observed treatment

assignment.

4.2 Asymptotic results for population
average potential outcome estimators
We derive the asymptotic properties of the estimator 𝑌 𝐿(𝑎; 𝛼)
for an increasing number of clusters 𝑁 , where 𝐺0 repre-

sents the joint distribution of the independent and identically

distributed random vectors (𝒀𝑖(⋅),𝑨𝑖,𝑳𝑖). (For notational sim-

plicity, 𝑛𝑖 is included in 𝑳𝑖.)

We denote the estimator 𝑌 𝐿(𝑎; 𝛼) based on 𝑁

clusters as 𝑌 𝐿
𝑁
(𝑎; 𝛼), and derive the asymptotic dis-

tribution of 𝝁01
𝑁
(𝛼) =

(
𝑌 𝐿
𝑁
(0; 𝛼), 𝑌 𝐿

𝑁
(1; 𝛼)

)𝑇
using

the estimated correctly-specified parametric propen-

sity score model. The cluster-propensity score for

the observed treatment vector will be denoted by

𝑓𝑨|𝑳,𝑖(𝑨𝑖|𝑳𝑖; 𝜸) where 𝜸 are the propensity score model

parameters.

Theorem 1. Let 𝝁010 (𝛼) =
(
𝑌
𝐿
(0; 𝛼), 𝑌

𝐿
(1; 𝛼)

)𝑇 . Assume
that Assumptions 2, 3 hold, the outcome is bounded (there
exists 𝑀 > 0 ∶ |𝑌𝑖𝑗| < 𝑀 with probability 1), the para-
metric form of the propensity score model indexed by 𝜸,
𝑓𝑨|𝑳,𝑖(𝒂𝑖|𝒍𝑖; 𝜸), is correctly specified and differentiable with
respect to 𝜸 with true parameters 𝜸0, and 𝝁01

𝑁
(𝛼) is calculated

using �̂�, the MLE of 𝜸. Let 𝝍𝛾 (𝒍𝑖,𝒂𝑖; 𝜸) =
𝜕

𝜕𝜸𝑇
log 𝑓 (𝒂𝑖|𝒍𝑖; 𝜸)

be the score functions. Assume that:

1. 𝜸0 is in an open subset of the Euclidean space,
2. 𝜸 → 𝝍𝛾 (𝒍𝑖,𝒂𝑖; 𝜸) is twice continuously differentiable

∀(𝒍𝑖,𝒂𝑖),
3. 𝐸𝐺0

‖‖‖𝝍𝛾 (𝑳𝑖,𝑨𝑖; 𝜸0)‖‖‖22 < ∞,

4. 𝐸𝐺0

{
𝜕

𝜕𝜸𝑇
𝝍𝛾 (𝑳𝑖, [𝑖;𝑨)]

|||𝜸=𝜸0
}

exists and is non-singular,

and
5. ∃ measurable integrable function

⋅⋅
𝜓𝛾 (𝒍𝑖,𝒂𝑖) fixed such that

⋅⋅
𝜓𝛾 dominates the second partial derivatives of 𝝍𝛾 for all
𝜸 in a neighborhood of 𝜸0.

Then,
√
𝑁

{
𝝁01
𝑁
(𝛼) − 𝝁010 (𝛼)

} 𝑑
→ 𝑁

(
0,𝑊 (𝛾0,𝝁010 (𝛼))

)
,

where

𝑊 (𝛾,𝝁) = 𝑉 (𝜸,𝝁) + 𝐴21𝐵
−1
11 𝐴

𝑇
21

+𝐴21𝐵
−1
11 𝐵12 +

(
𝐴21𝐵

−1
11 𝐵12

)𝑇
,

𝑉 (𝛾,𝝁) = 𝐸𝐺0

{
𝜓01,𝛼(𝒀𝑖,𝑳𝑖,𝑨𝑖;𝝁, 𝛾)

𝜓01,𝛼(𝒀𝑖,𝑳𝑖,𝑨𝑖;𝝁, 𝛾)𝑇
}
,

𝜓01,𝛼(𝒀𝑖,𝑳𝑖,𝑨𝑖;𝝁, 𝛾) =
(
𝜓0,𝛼

(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇0, 𝜸

)
,

𝜓1,𝛼
(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇1, 𝜸

))𝑇
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𝜓𝑎,𝛼
(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇𝑎, 𝜸

)
=

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

𝑃𝛼,𝐿(𝑨𝑖,−𝑗|𝐴𝑖𝑗 = 𝑎,𝑳𝑖)
𝑓𝑨|𝑳,𝑖(𝑨𝑖|𝑳𝑖; 𝜸) 𝐼(𝐴𝑖𝑗 = 𝑎)𝑌𝑖𝑗 − 𝜇𝑎

𝐴21 = 𝐴21(𝜸,𝝁) = 𝐸𝐺0

{
𝜕𝜓0,𝛼

(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇0, 𝜸

)
∕𝜕𝜸

𝜕𝜓1,𝛼
(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇1, 𝜸

)
∕𝜕𝜸

}𝑇

,

𝐵11 = 𝐵11(𝜸) = 𝐸𝐺0

{
𝝍𝛾 (𝑳𝑖,𝑨𝑖; 𝜸)𝝍𝛾 (𝑳𝑖,𝑨𝑖; 𝜸)𝑇

}
,

𝐵12 =𝐵12(𝜸,𝝁) = 𝐸𝐺0

{
𝝍𝛾 (𝑳𝑖,𝑨𝑖; 𝜸)𝜓0,𝛼

(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇0, 𝜸

)
,

𝝍𝛾 (𝑳𝑖,𝑨𝑖; 𝜸)𝜓1,𝛼
(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇1, 𝜸

)}
,

for 𝝁 = (𝜇0, 𝜇1).

Even though the MLE �̂� and the score equations were used

in Theorem 1, any consistent M-estimator of 𝜓-type can be

used, as long as its objective function𝝍𝛾 (𝒍𝑖,𝒂𝑖; 𝜸) satisfies the

theorem’s conditions.

For a known propensity score, asymptotic results

follow by considering 𝑓𝑨|𝑳,𝑖(𝑨𝑖|𝑳𝑖; 𝜸) as fixed with

respect to 𝜸, leading to 𝑊 (𝛾0,𝝁010 (𝛼)) = 𝑉 (𝛾0,𝝁010 (𝛼)).
In both cases, Theorem 1 leads to the approximation

𝝁01
𝑁
(𝛼) ∼ 𝑀𝑉𝑁2

(
𝝁010 (𝛼), 𝑁−1𝑊 (𝛾0,𝝁010 (𝛼))

)
for large

number of clusters. Even if assumptions about 𝐺0 are made,

𝑊 (𝛾0,𝝁010 (𝛼)) is hard to calculate analytically. Instead,

𝑊 (𝛾0,𝝁010 (𝛼)) can be estimated using 𝑊
(
�̂�,𝝁01

𝑁
(𝛼)

)
, where

𝑊 (𝜸,𝝁) is the matrix 𝑊 (𝛾,𝝁) where all expectations

are substituted with the empirical expectations. For exam-

ple, 𝐵11(𝜸) = 1
𝑁

∑𝑁
𝑖=1 𝝍𝛾 (𝑳𝑖,𝑨𝑖; 𝜸)𝝍𝛾 (𝑳𝑖,𝑨𝑖; 𝜸)

𝑇 . Under

regularity conditions, discussed in Iverson and Randles

(1989), 𝑊
(
�̂�,𝝁01

𝑁
(𝛼)

)
will be consistent for 𝑊 (𝛾0,𝝁010 (𝛼)).

Using Theorem 1, one can obtain the asymptotic distribu-

tion of a contrast between 𝑌 𝐿(0; 𝛼), 𝑌 𝐿(1; 𝛼) specifying

a direct effect by an application of the multivariate delta

method.

Next, we derive the asymptotic distribution for

𝝁𝐼𝐸(𝛼0, 𝛼1) =
(
𝑌 𝐿
𝑁
(0; 𝛼0), 𝑌 𝐿𝑁 (0; 𝛼1)

)𝑇
.

Theorem 2. Let 𝝁𝐼𝐸0 (𝛼0, 𝛼1) =
(
𝑌
𝐿
(0; 𝛼1), 𝑌

𝐿
(0; 𝛼2)

)𝑇 . If
the assumptions of Theorem 1 hold,

√
𝑁
{
𝝁𝐼𝐸(𝛼0, 𝛼1) −

𝝁𝐼𝐸0 (𝛼0, 𝛼1)
}
→ 𝑁

(
0, 𝑄(𝛾0, 𝜸𝐼𝐸0 (𝛼0, 𝛼1))

)
, where

𝑄(𝛾,𝝁) = 𝐷22(𝜸,𝝁) + 𝐶21𝐵
−1
11 𝐶

𝑇
21 + 𝐶21𝐵

−1
11𝐷12

+
(
𝐶21𝐵

−1
11𝐷12

)𝑇
𝐷22(𝜸,𝝁) = 𝐸𝐺0

{
𝜓0,𝛼1,𝛼2 (𝒀𝑖,𝑳𝑖,𝑨𝑖;𝝁, 𝛾)

𝜓0,𝛼1,𝛼2 (𝒀𝑖,𝑳𝑖,𝑨𝑖;𝝁, 𝛾)
𝑇
}

𝜓0,𝛼1,𝛼2 (𝒀𝑖,𝑳𝑖,𝑨𝑖;𝝁, 𝛾) =
(
𝜓0,𝛼1

(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇0, 𝜸

)
,

𝜓0,𝛼2
(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇0, 𝜸

))𝑇

𝐷12 = 𝐷12(𝜸,𝝁) = 𝐸𝐺0

{
𝝍𝛾 (𝑳𝑖,𝑨𝑖; 𝜸)

×𝜓0,𝛼1
(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇0, 𝜸

)
,

𝝍𝛾 (𝑳𝑖,𝑨𝑖; 𝜸)𝜓0,𝛼2
(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇0, 𝜸

)}
,

𝐶21 = 𝐶21(𝜸,𝝁) = 𝐸
{
𝜕𝜓0,𝛼1

(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇0, 𝜸

)
∕𝜕𝜸

𝜕𝜓0,𝛼2
(
𝒀𝑖,𝑳𝑖,𝑨𝑖;𝜇0, 𝜸

)
∕𝜕𝜸

}
,

and 𝐵11 as in Theorem 1.

4.3 Estimators and asymptotic results for the
population-level estimands
Similar arguments lead to estimators of the 𝐹𝛼-group and

population average potential outcomes in (3) and (4) as

𝑌 𝐿𝑖 (𝑎;𝐹𝛼) = ∫ 𝑌 𝐿𝑖 (𝑎; 𝛼) d𝐹𝛼(𝛼)

= 1
𝑛𝑖

𝑛𝑖∑
𝑗=1

𝑃𝐹𝛼,𝐿(𝑨𝑖,−𝑗|𝐴𝑖𝑗 = 𝑎,𝑳𝑖)
𝑓𝑨|𝑳,𝑖(𝑨𝑖|𝑳𝑖) 𝐼(𝐴𝑖𝑗 = 𝑎)𝑌𝑖𝑗 ,

𝑌 𝐿(𝑎;𝐹𝛼) = ∫ 𝑌 𝐿(𝑎; 𝛼) d𝐹𝛼(𝛼) =
1
𝑁

𝑛𝑖∑
𝑖=1
𝑌 𝐿𝑖 (𝑎;𝐹𝛼)

accordingly, where 𝑃𝐹𝛼,𝐿(𝑨𝑖,−𝑗|𝐴𝑖𝑗 = 𝑎,𝑳𝑖) =
∫ 𝑃𝛼,𝐿(𝑨𝑖,−𝑗|𝐴𝑖𝑗 = 𝑎,𝑳𝑖) d𝐹𝛼(𝛼).

Assume that 𝐹 1
𝛼 , 𝐹

2
𝛼 are discrete distributions taking

values 𝛼𝑘 ∈ (0, 1), 𝑘 = 1, 2,… , 𝐾 , with probability 𝑝1𝑘
and 𝑝2𝑘 accordingly, such that

∑𝐾
𝑘=1 𝑝ℎ𝑘 = 1, ℎ = 1, 2.

Then, 𝑌
𝐿
(0;𝐹ℎ𝛼 ) =

∑𝐾
𝑘=1 𝑝ℎ𝑘𝑌

𝐿
(0; 𝛼𝑘), 𝐼𝐸𝐿(𝐹 1

𝛼 , 𝐹
2
𝛼 ) =∑𝐾

𝑘=1(𝑝2𝑘 − 𝑝1𝑘)𝑌
𝐿
(0; 𝛼𝑘), and a consistent estimator of

𝐼𝐸𝐿(𝐹 1
𝛼 , 𝐹

2
𝛼 ) is 𝐼𝐸

𝐿
(𝐹 1
𝛼 , 𝐹

2
𝛼 ) =

∑𝐾
𝑘=1(𝑝2𝑘 − 𝑝1𝑘)𝑌

𝐿
(0; 𝛼𝑘).

The asymptotic distribution of 𝐼𝐸
𝐿
(𝐹 1
𝛼 , 𝐹

2
𝛼 ) follows by argu-

ments similar to the ones in Theorem 2 (Web Appendix

D).

Although the estimands in Section 3 are well-defined for

any distribution 𝐹𝛼 , reliable estimation requires sufficiently

overlapping support of 𝐹𝛼 with the empirical distribution 𝐹𝛼 .

4.4 Finite sample variance estimator
The asymptotic distributions derived above can be used to

compute Wald-type confidence intervals for a sample with a

large number of clusters. However, in settings with a small

number of observed clusters (as in the study of Section 6

with 50 clusters), a bootstrap (Efron, 1979) approach to finite

sample confidence intervals might be preferable.

Note that the population average potential outcome

𝑌
𝐿
(𝑎; 𝛼) is defined as the mean of the cluster quantity

𝑌
𝐿

𝑖 (𝑎; 𝛼). Thinking of the clusters as the unit of observa-

tion, uncertainty around 𝑌 𝐿(𝑎; 𝛼) can be acquired employing
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a bootstrap approach commonly used for mean estimators.

Here, 𝐵 new data sets are created, each consisting of the

same number of clusters as in the original data, sampled with

replacement from the observed ones. Confidence intervals for

𝑌 𝐿(𝑎; 𝛼) are constructed using the quantiles of the𝐵 bootstrap

estimates, for large 𝐵. Confidence intervals for all estimators

discussed here can be obtained similarly.

5 SIMULATIONS

Web Appendix A presents a simulation study to evaluate

the operating characteristics of the estimators based on the

true and estimated propensity score and using the asymptotic

variance and bootstrap approach to confidence intervals. We

construct a super-population of 2000 clusters, from which

𝑁 ∈ {50, 300} clusters are sampled randomly. The simu-

lations show that, when the propensity score is known, the

estimators are close to unbiased, and the 95% confidence

intervals achieve the nominal coverage for both the asymp-

totic and bootstrap approach. When the propensity score is

estimated, 95% confidence intervals based on the asymptotic

variance exhibit under-coverage. Bootstrap-based confidence

intervals perform favorably achieving close to the 95% level

in most cases, with apparent over coverage when estimating

the indirect effect with 𝑁 = 50.

6 EVALUATING THE
EFFECTIVENESS OF POWER
PLANT EMISSIONS CONTROLS
FOR REDUCING AMBIENT OZONE
POLLUTION

Limited literature exists evaluating U.S. air pollution regula-

tions within a causal inference framework. Power plant regu-

lations for the reduction of NO𝑥 emissions have been predi-

cated on the knowledge that reducing NO𝑥 emissions would

lead to a subsequent reduction in ambient ozone. Among var-

ious NO𝑥 emission reduction strategies, SCR and SNCR are

believed to be the most effective in reducing emissions. While

work in Papadogeorgou et al. (2018) corroborated this effec-

tiveness of SCR and SNCR for reducing NO𝑥 emissions, the

analysis of ambient ozone pollution in that paper ignores the

possibility of interference and estimates an effect on ozone

very close to zero. However, interference is a key component

in the study of air pollution: ambient pollution concentrations

near a power plant will depend on the treatment levels of other

nearby power plants.

We use the same data as in Papadogeorgou et al. (2018)

to estimate direct and indirect effects of SCR/SNCR against

alternatives on ambient ozone under realistic counterfactual

programs. The publicly-available data set includes 473 coal or

gas burning power generating facilities in the U.S. operating

during June, July and August 2004, with covariate informa-

tion on power plant characteristics, weather and demographic

information of the surrounding areas. For every power plant,

the value of ozone is calculated as the average of the 4𝑡ℎ

highest ozone measurements across EPA monitoring loca-

tions within 100km. See Papadogeorgou et al. (2018) for a

full description of the data set and linkage. Web Appendix B

includes links to the publicly available data set, R package,

and R scripts replicating the results.

Power plant facilities are grouped according to Ward’s

agglomerative hierarchical clustering method (Ward, 1963),

which starts by considering every unit as its own cluster

and proceeds by merging clusters based on an objective

function until all units form a single cluster. Clusters are

meant to represent interference groups, so the objective func-

tion is based solely on geographic closeness to encourage

grouping nearby power plants that are likely to emit over

each other. Visual inspection is used to choose 50 clusters

of power plants in the sequence of power plant partitions.

The grouping and treatment of facilities are depicted in

Figure 2.

6.1 Plausibility of the ignorability and
positivity assumption
While regulatory programs provide incentives to install

emission-control technologies, power plants have latitude to

select which (if any) technology to adopt. Such decisions

are largely determined by the power plant’s characteristics

such as its size and operating capacity, as well as by fac-

tors related to local or regional air pollution incentives that

are influenced by area-level characteristics such as popu-

lation density and urbanicity. To capture such factors, 18

covariates are included in the data set describing power

plant, weather, and demographic characteristics, based on

which ignorability is expected to hold. The variability in the

observed proportion of treated power plants across clusters

provides an additional indication that the positivity assump-

tion is plausible. The propensity score was modeled as in

Papadogeorgou et al. (2018) augmented with a cluster-specific

random effect following common practice in the analysis of

clustered data:

logit𝑃 (𝐴𝑖𝑗 = 1|𝑳𝑖𝑗) = 𝛾0 + 𝛽𝑖 +𝑳𝑇𝑖𝑗𝜸𝐿, 𝛽𝑖 ∼ 𝑁(0, 𝜎2
𝑏
), (6)

where 𝜸 = (𝛾0, 𝜸𝑇𝐿, 𝜎
2
𝑏
)𝑇 in the notation of Theorem 1. Such

model has been shown to perform well in the presence of

unmeasured cluster-level confounders (Arpino and Mealli,

2011; Li et al., 2013) providing robustness to violations of

the conditional ignorability assumption.



8 PAPADOGEORGOU ET AL.

FIGURE 2 Treated (SCR/SNCR) and control (Other) power plant facilities during June, July, August of 2004. Shaded areas depict the interference

clusters according to the agglomerative clustering method.

6.2 Counterfactual treatment allocation for
the installation of SCR/SNCR technologies
To specify counterfactual treatment allocations that reflect

realistic relationships between covariates and the propensity

to adopt treatment, we specify 𝑃𝛼,𝐿 such that the log-odds of

treatment installation related to individual covariates are as

observed in the propensity score model for the observed treat-

ment in (6). Even though this choice of 𝑃𝛼,𝐿 depends on the

data through the estimated log-odds, the corresponding esti-

mands are well-defined and the asymptotic results are valid for

𝑃𝛼,𝐿 fixed across replications of the sampling or an increas-

ing number of clusters. Note that, in general, the covariates

used to specify 𝑃𝛼,𝐿 need not be identical to those used in the

observed propensity score model.

Values of 𝛼 were considered between the 20𝑡ℎ and 80𝑡ℎ
quantiles of the observed cluster treatment proportions, corre-

sponding to 𝛼 ∈ [0.073, 0.458]. Figure 3 shows the population

direct effect𝐷𝐸(𝛼), and population indirect effect 𝐼𝐸(𝛼1, 𝛼2)
for a subset of values of 𝛼1 with bootstrap confidence intervals

(asymptotic intervals are reported in Web Appendix B).

The direct effect is estimated to be negative for all val-

ues of 𝛼 and has a somewhat increasing trend, implying

that in a world where the average propensity of SCR/SNCR

among power plants in a cluster is fixed, the installation

of SCR/SNCR at one power plant is estimated to reduce

ozone concentrations in the surrounding area, but these

reductions are smaller when the cluster average propen-

sity of treatment is high (larger number of treated neigh-

bors). Using the bootstrap, these reductions are statistically

significant for 𝛼 ∈ (0.22, 0.28), whereas asymptotic confi-

dence intervals indicate significance for almost all values

of 𝛼 considered.

The indirect effect is, in a way, a measure of pollution

transport since it quantifies the effect of changes in the clus-

ter average propensity of treatment on ozone concentrations

near control power plants. For fixed 𝛼1, 𝐼𝐸𝐿(𝛼1, 𝛼2) is almost

always decreasing in 𝛼2, implying that higher cluster-average

SCR/SNCR propensity leads to reductions in ambient ozone

concentrations surrounding control power plants. Bootstrap

confidence intervals indicate that the indirect effects were

not significant. However, based on the asymptotic confidence

FIGURE 3 Estimates of the direct effect of SCR/SNCR versus alternative strategies on ozone concentrations as a function of 𝛼, and estimates of

the indirect effect for values 𝛼1 ∈ {0.1, 0.4}. Shaded areas represent 95% Bootstrap confidence intervals. Ozone is measured in parts per million.
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intervals, the indirect effect is estimated to be significant for

values of 𝛼1 ≥ 0.15 and all 𝛼2.

Next, we considered estimating the effect of hypothesized

federal regulations that would shift the distribution of cluster-

average propensity of treatment. 𝐹 1
𝛼 (𝐹 2

𝛼 ) was assumed to be a

discrete distribution within the 20𝑡ℎ (50𝑡ℎ) and 80𝑡ℎ quantiles

of the observed cluster-treatment proportions. In Figure 4, we

show the empirical probability mass function, as well as the

two counterfactual treatment allocations. 𝐼𝐸𝐿(𝐹 1
𝛼 , 𝐹

2
𝛼 ) was

estimated to be −0.0036 parts per million (95% CI: Bootstrap

−0.0208 to 0.005, Asymptotic −0.0059 to −0.0013) implying

that federal regulations that encourage SCR/SNCR installa-

tion enough to bring the cluster average treatment propensity

distribution from taking values between the 20𝑡ℎ and 80𝑡ℎ per-

centiles of the empirical cluster coverage distribution to taking

values between the 50𝑡ℎ and 80𝑡ℎ percentiles of the empiri-

cal cluster coverage distribution, would lead to ambient ozone

concentrations surrounding control power plants that are on

average 0.0036 parts per million lower. Compare these esti-

mates against the national ozone air quality standard of 0.07

parts per million.

We explored the sensitivity of the results to the choice of

clustering, and saw that the qualitative results for the effec-

tiveness of SCR/SNCR emission reduction technologies are

mostly consistent with negative estimated direct effects and

decreasing indirect effect curves. The same holds using a

propensity score that excluded the cluster-specific random

effects. Estimates of the estimands in Tchetgen Tchetgen and

VanderWeele (2012) that assume manipulation of individual

power-plant treatment propensities indicated similar patterns

and magnitudes to those in Figure 3. These results can be

found in Web Appendix B.

7 DISCUSSION

Analyzing data accounting for interference disentangles the

individual treatment effect from one’s neighbors’ treatment

effect. We proposed new estimands for counterfactual strate-

gies that depend on covariates and the treatment of one’s

neighbors, manipulating treatment at the cluster, or the

population of clusters level. Despite the focus on air pol-

lution interventions, similar considerations could be con-

strued in classical interference settings such as vaccine

studies, where certain types of community members are

more likely to receive the vaccine and vaccine programs

are designed to increase coverage at the community, or

national level.

For the estimands referring to population level inter-

ventions, 𝐹𝛼 could be specified to depend on cluster-level

covariates acting as predictors of cluster-average propensity

of treatment. Alternative estimands can be defined for strate-

gies that manipulate the relationship between covariates and

treatment assignment to reflect, for example, interventions

for which larger power plants receive higher penalties for

over-emission.

Consistent estimators were proposed for which asymptotic

distributions were derived. These estimators were employed

in the comparative effectiveness of power plant emission con-

trol strategies on ambient ozone, returning results that are

more in line with subject-matter knowledge than results from

a previous study that assumed no interference. While the

power plant analysis showed the potential for causal infer-

ence methods for interference to lead to important results in

air pollution research, the assumption of partial interference –

and the existence of distinct clusters– is a simplification since

pollution from one power plant can travel long distances. The

Web Appendix explores alternative clusterings with compa-

rable results. Ongoing work is oriented towards an account

of interference that does not rely on clusters (Forastiere

et al., 2018). The existence of between-clusters interference

should be viewed in the light of work by Sobel (2006), Tch-

etgen Tchetgen and VanderWeele (2012), Forastiere et al.

(2017), and Sävje et al. (2018), where it is shown that ignor-

ing interference can lead to estimated quantities that lack

FIGURE 4 Observed cluster treatment proportions (“Observed”), and two discrete hypothesized distributions of cluster-average propensity of

treatment. One corresponds to the empirical distribution restricted within the 20𝑡ℎ and 80𝑡ℎ quantiles of the observed cluster treatment proportions

(“Observed-restricted”), and the other (“Counterfactual”) corresponds to the empirical (or the Observed-restricted) further restricted between the 50𝑡ℎ

and 80𝑡ℎ quantiles of the observed cluster treatment proportions.
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causal interpretation, unless further assumptions are made.

Despite the limitations, the analysis of the air quality data

entails a methodological advance for studies of air pollution

interventions and formalizes interference in a realm where

it has not, to our knowledge, been previously considered

in detail.
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SUPPORTING INFORMATION

Additional supporting information referenced in Sections 2, 4,

5, and 6 may be found online in the Supporting Information

section at the end of the article. Data and code to reproduce

the study results are available at https://osf.io/7dp8c/. R pack-

age implementing the estimators in this paper can be found at

https://github.com/gpapadog/Interference.
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