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Abstract

We introduce a framework for estimating causal effects of binary and continuous treatments in high
dimensions. The proposed framework extends many existing estimators introduced in the causal infer-
ence literature to high-dimensional settings. We discuss how posterior distributions of any treatment
and outcome model can be used together with any causal estimator that is defined as a function of
data, and treatment and outcome models (e.g. inverse probability weighted or doubly robust estima-
tor). We propose an approach to uncertainty quantification of causal estimators that utilizes posterior
distributions of model parameters that (1) results in good frequentist properties in small samples, (2)
is based on a single MCMC, and (3) improves over frequentist measures of uncertainty which rely
on asymptotic properties. We show that, for the doubly robust estimator, the posterior contraction
rate is the product of the contraction rates of the treatment and outcome models. We consider a
flexible framework for modeling the treatment and outcome processes within the Bayesian paradigm
that reduces model dependence, accommodates nonlinearity, and achieves dimension reduction of the
covariate space. We illustrate the ability of the proposed approach to flexibly estimate causal effects in
high dimensions and appropriately quantify uncertainty, and show that it performs well relative to ex-
isting approaches. Finally, we estimate the effect of continuous environmental exposures on cholesterol
and triglyceride levels. An R package is available at github.com/jantonelli111/DoublyRobustHD

1 Introduction

There has been a rapid growth in the interest of estimating the causal effect of a treatment (T ) on
an outcome (Y ) when the dimension of the covariate space (X) grows with the sample size. In high-
dimensions, some form of dimension reduction or variable selection is required, and most approaches
utilize both the treatment and outcome to reduce the dimension of the parameter space in a way that
eliminates confounding bias. Recent work has focused on utilizing doubly robust approaches to achieve√
n consistent estimates of treatments effects that provide uniformly valid inference (Belloni et al. ,

2014; Farrell, 2015; Chernozhukov et al. , 2016). In related work, Athey et al. (2018) achieve
√
n

consistent estimation of treatment effects by combining outcome regression models with weights that
balance any remaining differences in covariates between treated and control units. Targeted maximum
likelihood (TMLE, Van Der Laan & Rubin (2006); Van der Laan & Rose (2011)) can also be used
to estimate treatment effects in this setting by using high-dimensional linear models to estimate the
necessary nuisance functions. Other approaches have combined information from both the treatment
and outcome to improve finite sample performance of treatment effect estimation and confounder
selection. Antonelli et al. (2016) utilized the lasso (Tibshirani, 1996) to estimate a propensity and
prognostic score, and showed that matching on both quantities leads to doubly robust estimates of
treatment effects. Ertefaie et al. (2018) derived a penalization estimator that incorporates information
from both the treatment and outcome to identify confounders. Shortreed & Ertefaie (2017) used the
adaptive lasso to estimate propensity score models that reduce shrinkage of coefficients for covariates
also associated with the outcome. Antonelli et al. (2017) used similar ideas but used information
from the treatment model to reduce shrinkage of coefficients in an outcome model. Finally, Hahn
et al. (2018) utilized horseshoe priors on a re-parameterized outcome and treatment model to tailor
shrinkage of coefficients towards estimating treatment effects.

Nonlinear models have been adopted in the causal inference framework to flexibly estimate treat-
ment effects. TMLE estimators allow for the use of super learners or flexible machine learning tech-
niques to estimate functions of the covariates necessary to estimate treatment effects. Recently, flexible
Bayesian methods such as Bayesian additive regression trees (BART) (Chipman et al. , 2010) have
been utilized to flexibly model potential outcomes and estimate treatment effects (Hill, 2011). While
these approaches do not rely on modeling assumptions in either the treatment or outcome model, they
do not immediately extend to the high-dimensional regime where p ≥ n.
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In this paper we show how posterior distributions of the propensity score and/or outcome models
can be used in combination with any causal estimator from a large class. Such estimators correspond to
estimators of treatment effects and average potential outcomes of binary, continuous, or multi-valued
treatments that are functions of data and the propensity score (for example, the inverse probability
of treatment weighted estimator), or functions of data, the propensity score, and the outcome model
(for example, the doubly robust estimator (Bang & Robins, 2005)). We use the posterior distributions
for these models to acquire estimates of causal quantities. We introduce an approach to estimate
the variance of the causal effect estimator and perform inference by combining posterior samples
of propensity score and outcome model estimates with an efficient resampling procedure that only
requires one MCMC run. This leads to confidence intervals that have good frequentist properties in
finite samples. Building on previous results on doubly robust estimation in high dimensions (Belloni
et al. , 2014; Farrell, 2015) we prove that the doubly robust estimator contracts at a rate that is the
product of the posterior contraction rates for the treatment and outcome models. Lastly, we propose
one approach to model the high-dimensional propensity and outcome models utilizing flexible Bayesian
methods that relax modeling assumptions and incorporate sparsity inducing prior distributions.

2 Notation, estimands, and identifying assumptions

Let T and Y be the treatment and outcome of interest, respectively, while X is a p−dimensional
vector of potential confounders. We observe an i.i.d sample Di = (Xi, Ti, Yi) for i = 1 . . . n, and
denote D = (D1,D2, . . . ,Dn). We will be working under the high-dimensional situation where the
number of covariates exceeds the sample size, and is potentially growing with the sample size. Our
framework will be quite general in the sense that the ideas presented will be applicable to a wide
variety of causal estimands. For clarity, we will first focus on binary treatments and the average
treatment effect (ATE) defined as ∆ = E(Y (1) − Y (0)), where Y (t) is the potential outcome that
would have been observed under treatment T = t.

For binary treatments, identification of the average treatment effect based on the observed data
relies on the stable unit treatment value assumption (SUTVA) (Little & Rubin, 2000), unconfound-
edness, and positivity. SUTVA implies that for each unit the same treatment cannot lead to different
outcomes. Unconfoundedness and positivity are:

Unconfoundedness: T ⊥⊥ Y (t)|X for t = 0, 1
Positivity: There exist δ ∈ (0, 1) such that 0 < δ < P (T = 1|X) < 1− δ < 1.

where P (T = 1|X) denotes the propensity score (Rosenbaum & Rubin, 1983). There exists analagous
assumptions when estimating the effect of a continuous treatment on an outcome, though we refer
readers to previous literature on the topic for more details (Gill & Robins, 2001; Hirano & Imbens,
2004; Kennedy et al. , 2017).

Even though the ideas presented below are applicable to any estimator that is a function of data,
and at least one of the propensity score or outcome models, we focus for illustration purposes on doubly
robust estimators for binary and continuous treatments. For instance, if Ψ represents the parameters
of the propensity score and outcome models, and pti = P (Ti = t|Xi), mti = E(Yi|Ti = t,Xi) represent
the fitted values of the treatment and outcome models based on the parameters Ψ, a doubly robust
estimator of the ATE for binary treatments is

∆(D,Ψ) =
1

n

[
n∑
i=1

TiYi
p1i
− Ti − p1i

p1i
m1i

]
− 1

n

[
n∑
i=1

(1− Ti)Yi
p0i

+
Ti − p1i
p0i

m0i

]
. (1)

3 Combining causal estimators with propensity score and out-
come model posterior distributions

Parameter values Ψ are typically not known and must be estimated. Since Bayesian modeling ap-
proaches provide a natural way of uncertainty quantification, assume that propensity score and out-
come models are estimated within a Bayesian framework from which posterior distributions for Ψ are
acquired. Even though we provide one such modeling approach in Section 4, the framework presented
here allows for any Bayesian modeling technique.

When the propensity score and outcome model parameters are estimated within the Bayesian
framework, questions arise on how to use the posterior distribution of these models to (1) acquire
estimates of treatment effects, and (2) perform inference with good frequentist properties. Even
though we focus on the doubly robust estimator in Equation 1, these ideas apply to any estimator
that is a function of data, treatment and outcome model parameters.
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Figure 1: Values of estimator for different combinations of resampled data sets
and posterior samples

3.1 The doubly-robust estimator using posterior distributions

In frequentist settings, the doubly robust estimator in (1) is often evaluated using the MLE of the
parameters Ψ. However, when model estimation is performed within the Bayesian paradigm, inves-

tigators have access to a posterior distribution of Ψ. Let
{
Ψ(b)

}B
b=1

represent B draws from the

posterior distribution of Ψ. We consider an estimator ∆̂ defined as:

∆̂ = EΨ|D[∆(D,Ψ)] ≈ 1

B

B∑
b=1

∆(D,Ψ(b)),

where ∆(D,Ψ(b)) is the quantity in Equation 1 evaluated using the observed data D and parameter
values Ψ(b).

3.2 Inference with good frequentist properties

While it is straightforward to use the posterior distribution of Ψ (or samples from it) to acquire a
point estimate, performing inference is less clear. Typically in Bayesian inference, posterior draws
are sufficient for uncertainty quantification of model parameters or functionals of these parameters.

However, performing inference using the variance or quantiles of
{

∆(D,Ψ(b))
}B
b=1

does not fully
account for uncertainty in our causal estimate, since the estimator in Equation 1 is a function of both
the parameters, and the observed data D.

We note that frequentist operating characteristics (such as interval coverage) are focused around
the estimator’s sampling distribution, the distribution of the point estimate over different data sets.
The variance of our estimator’s sampling distribution can be written as

VarD
(
∆̂
)

= VarD{EΨ|D[∆(D,Ψ)]}. (2)

In an ideal world, we would find this variance by repeatedly resampling from the distribution of D,
calculate EΨ|D[∆(D,Ψ)] for each data set, and take the variance of these estimates. We can’t do this
for two reasons: 1) We don’t know the distribution of the data (though it can be approximated by
the empirical distribution), and 2) even if we did, it would be computationally prohibitive to estimate
the posterior mean for each new data set.

Instead, we detail an approach that combines the samples of the parameter posterior distribution
based on our observed data with an efficient resampling procedure to obtain confidence intervals with
good frequentist operating characteristics. Our strategy is to create M new datasets, D(1), . . . ,D(M),
by sampling with replacement from the empirical distribution of the data. Note that while we are
using the nonparametric bootstrap here, other resampling techniques such as the Bayesian bootstrap
could be applied as well. For all possible combinations of resampled data sets and posterior samples,
we calculate ∆(D(m),Ψ(b)) for m = 1, . . . ,M , and b = 1, . . . , B. The values ∆(D(m),Ψ(b)) can be
arranged in a matrix where rows correspond to data sets, and columns correspond to posterior samples,
as shown in Figure 1.

First, we acquire the mean within each row corresponding to EΨ|D[∆(D(m),Ψ)] for m = 1, . . . ,M .

The variance of these M values is an estimate of VarD(m){EΨ|D[∆(D(m),Ψ)]}, which resembles the
target variance in (2) but is not equal to it for two reasons. The first is that we are drawing new data
sets from the empirical distribution of the data instead of the true joint distribution. However, this is
acceptable in many settings and is the main idea behind the bootstrap.

The second and perhaps most important reason is that that distribution used in the outer moment
(D(m)) does not agree with the one in the inner moment (Ψ|D), stemming from calculating the esti-
mator using the posterior distribution from the original data Ψ|D instead of the posterior distribution
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Ψ|D(m). Therefore, VarD(m){EΨ|D[∆(D(m),Ψ)]} accounts for the uncertainty in the estimator for
a fixed posterior distribution (the one corresponding to the observed data) and ignores uncertainty
stemming from the fact that the posterior distribution Ψ|D(m) might be different across data sets.
For that reason, inference based on this quantity will achieve close to nominal level only when the
variability of the posterior distribution relative to the variability of the data is low, and is likely to
be anti-conservative in settings where there is a lot of uncertainty in estimating Ψ (see also Appendix
H).

Therefore we correct the variance estimate VarD(m){EΨ|D[∆(D(m),Ψ)]} by adding a term that
explicitly targets the variability of the posterior distribution over different data sets. Specifically, our
variance estimate is

VarD(m){EΨ|D[∆(D(m),Ψ)]}+ ED(m){VarΨ|D[∆(D(m),Ψ)]}.

We can estimate the second term in the same manner as the first term by using the M by B matrix
of estimates in Figure 1. To better understand why the additional term ED(m){VarΨ|D[∆(D(m),Ψ)]}
targets the error in the initial variance estimate, we focus on VarΨ|D[∆(D(m),Ψ)] whereD(m) is fixed,

and the randomness in ∆(D(m),Ψ) is only due to randomness in Ψ. Further, (Freedman, 1999) shows
that the posterior distribution of a function of Ψ is expected to resemble the sampling distribution
of its posterior mean, which is the basis for using credible intervals in order to achieve nominal
frequentist confidence interval coverage. With that in mind, we can see that VarΨ|D[∆(D(m),Ψ)] ≈
VarD{EΨ|D[∆(D(m),Ψ)]}, which is the variance in our estimator that stems just from uncertainty
in D and propogates through Ψ|D. This is exactly the variance that our initial variance estimator
was ignoring, and therefore adding in this second term removes the error from only estimating one
posterior distribution instead of M . We refer readers to Appendix C for more details.

In Section 6 we empirically show that this variance estimate accurately approximates the Monte
Carlo variance of the estimator under various scenarios, even when both models are misspecified.

4 Modeling framework in high dimensions

While this approach to combining posterior samples with resampled data sets works in general, it is
most useful in high-dimensions when accounting for uncertainty in parameter estimation can be quite
difficult. Since many well-known estimators depend on the propensity score and outcome model fitted
values, we posit Bayesian high-dimensional treatment and outcome models as

h−1y (E(Yi|Ti,Xi)) = β0 + ft(Ti) +

p∑
j=1

fj(Xji) (3)

h−1t (E(Ti|Xi)) = α0 +

p∑
j=1

gj(Xji), (4)

where hy() and ht() are suitable link functions. For estimators that rely on only one of the two models,
such as the inverse probability weighted estimator, the other model can be dropped. Note that these
models only specify the mean of each random variable. In cases where the treatment or outcome
are not binary, additional parameters and modeling assumptions are required. If either of them is a
continuous random variable, we specify a normal distribution with the mean defined above (with the
identity link function) and variance σ2.

These models assume that the relationship of the covariates with the treatment and outcome are
additive, which helps reduce the complexity of estimation in high-dimensions. We stress here that
this is not a requirement for the uncertainty quantification presented in Section 3, and alternative
high-dimensional models that allow for interactions (see for example Linero & Yang (2018)) can be
accommodated. We explore this possibility via simulation in Appendix F.

4.1 Guassian process prior specification

For now the functional form of the relationships between the covariates and the treatment or outcome
is unspecified. Here, we present the prior specification for the outcome model only, but analogous
representations are used for the treatment model. We adopt Gaussian process priors for the unknown
regression functions, fj() and gj() for j = 1, . . . , p. We use Xj to denote the vector of values for the
jth covariate across all units, (Xj1, . . . , Xjn). Since we only need to evaluate fj() at the n observed
locations (denoted by fj(Xj)), we can represent our prior as follows:

fj(Xj) ∼ (1− γj)δ0 + γjN (0n, σ
2τ2j Σj)
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γj ∼ Bernoulli(θ) θ ∼ B(aθ, bθ)

τ2j ∼ Gamma(1/2, 1/2) σ2 ∼ InvGamma(aσ2 , bσ2).

Here, σ2 is the residual variance of the model when the outcome is normally distributed, otherwise
it is fixed to 1. We utilize a latent variable, γj , which indicates whether variable j is important for
predicting the outcome. If γj = 0, the predictor Xj is eliminated from the model. We assume a
gamma(1/2, 1/2) prior on the variance τ2j similarly to Mitra & Dunson (2010). Finally, the (i, i′)
entry of the covariance matrix Σj is K(Xji, Xji′), where K(·, ·) is the kernel function of the Gaussian

process. Throughout we will proceed with K(z, z′) = exp{− |z−z
′|

φ }, where φ is a bandwidth parameter
that must be chosen.

The formulation above allows for flexible modeling of the response functions fj(). One criticism
of using Gaussian processes is that they can be very computationally burdensome, particularly as
the sample size increases, because at each iteration of an MCMC one must invert an n by n matrix.
Reich et al. (2009) showed that this can be avoided by using a singular value decomposition on the
kernel covariance matrices before running the MCMC. This allows us to utilize Gaussian processes in
reasonably sized data sets, but the computation can still be slow for large sample sizes. Details of this
can be found in their paper or in Appendix B.

4.2 Basis expansion specification

The computational burden of the Gaussian process prior can be greatly alleviated using basis functions,
such as cubic splines. This reduces the amount of flexibility in estimation of fj(Xj) as we are restricting
the class of functions permitted by our prior specification, but greatly reduces the computational
complexity and allows us to model much larger data sets. To do this, we must introduce some

additional notation. Let X̃j represent an n by q matrix of basis functions. Then, we write fj(Xj) =

X̃jβj and assume:

(βj |γj) ∼ (1− γj)δ0 + γjψ(βj)

γj ∼ Bernoulli(θ) θ ∼ Beta(aθ, bθ) σ2 ∼ InvGamma(aσ2 , bσ2).

This specification places a multivariate spike and slab prior on the group of coefficients, βj , that will
force all coefficients to zero and eliminate covariate j from the model if γj = 0. If γj = 1, then
all elements of βj will be nonzero with prior distribution ψ(βj) specified as a mean−0 multivariate
normal distribution with covariance σ2σ2

βIn. A value for σ2
β can be selected either via empirical Bayes

or by placing a hyper prior on σ2
β.

5 Contraction rate of the doubly robust estimator

In high-dimensional settings, achieving
√
n−consistency of treatment effect estimators is not trivial.

We restrict attention to the doubly robust estimator, which is of particular interest in high-dimensional
settings because it allows us to achieve better rates of contraction than approaches based on a single
model. In the semi-parametric causal inference literature this has allowed the use of machine learning
approaches that converge at n1/4 rates or high-dimensional models that converge at

√
n/ log p rates

(Chernozhukov et al. , 2016; Farrell, 2015).
Here, we establish that these same ideas carry over into posterior contraction rates for the posterior

distribution of ∆(D,Ψ). Note that when treating D as fixed, ∆(D,Ψ) is a functional of only Ψ
and it has a posterior distribution. Throughout the rest of this section when we refer to a posterior
distribution, it is this that we are referring to. It might initially appear counterintuitive to prove
posterior contraction rates when our approach is not fully Bayesian. However, deriving contraction
rates for the posterior distribution of ∆(D,Ψ) also establishes convergence rates of specific features
of the distribution such as the posterior mean which is our estimator.

5.1 Notation and assumptions

Let pti = P (Ti = t|Xi), mti = E(Y (t)|Xi), and E(Y (t)) = µt, where each of these can be estimated
using the parameters in our model specification above. We will denote their true values as p∗ti, m

∗
ti,

and µ∗t , respectively. Throughout this section, we will utilize the subscripts n and P0 to represent
moments with respect to the posterior distribution and true data generating process, respectively. In
particular Pn represents the posterior distribution given a sample of n observations, and EP0

is the
expected value with respect to P0, the true data generating process. Before we detail our result on
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posterior contraction, we must highlight a few assumptions.

Assumption 1 (Data generating process)
(a) {(Yi, Ti,Xi)}ni=1 are i.i.d samples from P0

(b) The covariates Xj have bounded support, in that there exists Kx <∞ such that |Xj | < Kx with
probability 1 for all j.

(c) sup
P0

EP0
((Y −m∗ti)2) ≤ Ky <∞.

Assumption 1a restricts analysis to the cross-sectional setting. Assumption 1b is likely to be satisfied
in real applications as nearly all underlying variables are naturally bounded. Assumption 1c ensures
that the residual variance of the outcome is bounded, which again should be satisfied in most appli-
cations.

Assumption 2 (Bounds on the error of posterior distributions)

(a) sup
P0

EP0
Varn

(
pti−p∗ti
pti
|Di

)
≤ Kp <∞

(b) sup
P0

EP0
Varn

(
mti −m∗ti|Di

)
≤ Km <∞

Assumption 2a effectively states that the posterior distribution of pti does not assign mass to neigh-
borhoods of 0, and can be satisfied through prior distribution constraints. Assumption 2b states that
the difference between the true conditional mean of the outcome and the corresponding posterior is
bounded. This is a mild assumption in general, and is automatically satisfied if Y is categorical.
Finally, we detail the assumptions required on either the treatment or outcome model:

Assumption 3 (Posterior contraction of treatment and outcome models) There exist two sequence
of numbers εnt → 0 and εny → 0, and constants Mt > 0 and My > 0 that are independent of εnt and
εny, respectively, such that

(a) sup
P0

EP0
Pn
(

1√
n
||pt − p∗t || > Mtεnt|D

)
→ 0, and

(b) sup
P0

EP0
Pn
(

1√
n
||mt −m∗t || > Myεny|D

)
→ 0,

where ||v|| =
√
v21 + · · ·+ v2n.

Assumption 3a and 3b state that the posterior distribution of the treatment and outcome models
contract at rates εnt and εny, respectively. Achieving rates of posterior contraction such as these
typically relies on their own set of assumptions, such as conditions on the design matrix X or sparsity.
We will restrict discussion of these issues to relevant papers on posterior contraction in regression
models (Castillo et al. , 2015; Yang et al. , 2015; Yoo et al. , 2016). Our goal is to examine the
posterior of ∆(D,Ψ), conditional on that either Assumption 3a or 3b is true. In particular, we show
that we only need one of Assumptions 3a or 3b to hold in order to achieve posterior contraction of
µt, though having both improves the rate of posterior contraction. Further, we show that this result
holds uniformly over P0.

5.2 Posterior contraction

We state the posterior contraction result for µt but the extension to µ1 − µ2 is trivial. We find a
minimum possible sequence of numbers εn → 0, and a constant M which does not depend on εn, such
that

sup
P0

EP0
Pn(pt,mt : |µt − µ∗t | > Mεn|D)→ 0, (5)

where εn defines the rate of contraction of the posterior. The faster εn converges to zero while main-
taining this result, the faster our posterior distribution contracts.

Theorem 1: Assume positivity, no unmeasured confounding, SUTVA, and Assumptions 1 and 2
hold. If Assumptions 3a and 3b hold, Equation 5 is satisfied with εn = max(n−1/2, εntεny). If only
one of assumptions 3a or 3b hold, Equation 5 is satisfied with εn = max(n−1/2, ηn), where ηn is the
contraction rate for the correctly specified model.

A proof of this result can be found in Appendix A. This results implies that posterior consistency is
achieved as long as only one model is correctly specified (double robustness), regardless of the covariate
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dimension. Further, in high-dimensions where regression parameters will contract at slower rates than
n−1/2, we can still obtain a contraction rate of the treatment effect that is n−1/2 if the product of their
contraction rates is less than or equal to n−1/2. For instance, in high-dimensional linear regression
the posterior contraction rate of regression coefficients when using spike and slab priors is

√
log p/n

(Castillo et al. , 2015). If both the treatment model and outcome model parameters contract at this
rate, then the posterior distribution of ∆(D,Ψ) still contracts at n−1/2 as long as log p ≤ n3/2. Our
result has implications for low-dimensional models as well. If one is interested in using nonparametric
priors, which contract more slowly than parametric models, but allow for highly flexible modeling of
the regression models, n−1/2 contraction can still be obtained under the same logic.

6 Simulation studies

6.1 Binary treatments

We set n = 100 and p = 500, and generate data as:

Xi ∼ N(0p,Σ), Ti|Xi ∼ Bernoulli(pi) Yi|Ti,Xi ∼ N (µi, In).

We set Σij = 1 if i = j and Σij = 0.3 if i 6= j. We simulate data under two scenarios for the true
propensity and outcome regressions:

Linear Simulation: µi = Ti + 0.75X1i +X2i + 0.6X3i − 0.8X4i − 0.7X5i

pi = Φ(0.15X1i + 0.2X2i − 0.4X5i)

Nonlinear Simulation: µi = Ti + 0.8X1i + 0.4X3
2i + 0.25e|X2i| + 0.8X2

5i − 1.5sin(X5i)

pi = Φ(0.15X1i − 0.4X2i − 0.5X5i)

We estimate the average treatment effect using: a) double post selection regression (Double PS)
introduced in Belloni et al. (2014); b) doubly robust estimators (lasso-DR) introduced in Farrell
(2015); c) the residual de-biasing approach (De-biasing) of Athey et al. (2018); d) Targeted maximum
likelihood (TMLE, Van Der Laan & Rubin (2006)) with lasso models; and e) the double machine
learning approach (DML, Chernozhukov et al. (2016)) with lasso models. For each of these approaches,
asymptotic standard errors were estimated, and confidence intervals were defined as the interval within
1.96 estimated standard errors of the point estimate. For the nonlinear scenarios we only compare
with TMLE and DML, as the other approaches rely on linearity of models and do not immediately
extend to nonlinear scenarios. For both of these approaches, we use an initial screening step from a
group lasso model, and then fit nonlinear outcome models on the chosen covariates. Treatment models
are specified to be linear. More details of our implementation of these approaches can be found in
Appendix I. We implement our approach using the models in Section 4 and employing the doubly
robust estimator. For the treatment and outcome models, we consider linear models, models using 3
degree of freedom splines for each covariate (Section 4.2), and models that use Gaussian process priors
for each covariate (Section 4.1), and use the treatment and outcome model that minimizes WAIC
((Watanabe, 2010)). WAIC is a Bayesian analog of commonly used model selection criteria such as
AIC or BIC. We will refer to this doubly robust estimator as Bayes-DR.

Figure 2 shows the results from the two simulation studies across both scenarios. The estimator
proposed in this paper is in grey, while the existing approaches are in black. In the linear scenario,
the models that estimate treatment effects using linear outcome models, the Double PS, TMLE, and
DML do very well. Despite that, the Bayes-DR estimator is the only estimator that achieves interval
coverages near the nominal level. In the nonlinear simulation, we see that our estimator obtains the
lowest MSE of all approaches, and again achieves coverages close to the nominal level.

6.2 Continuous treatments

Here, we restrict attention to n = 200 and p = 200, and generate data as:

Xi ∼ N(0p,Σ), Ti|Xi ∼ N (µti, 1), Yi|Ti,Xi ∼ N (µyi , 1)

where Σij = 1 if i = j and Σij = 0.3 if i 6= j,

µti = 0.6X2
1i + 0.6X1i + exp(abs(0.65X2i))− 0.8X2

3i, and

µyi = 5 + 0.05T 3
i − 0.1T 2

i + 0.6X1i + 0.4exp(X1i) + log(abs(0.65X2i)) + 0.5(1 +X3i)
2.

Our estimand of interest is now the entire exposure response curve, therefore we will be estimating
E(Y (t)) for all t in the support of T . To estimate this quantity for all t we use our treatment and
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Figure 2: Results from simulations with binary treatments. The top panel shows
results for the linear scenario, while the bottom panel shows results for the non-
linear scenario. The first column shows absolute bias, the second column shows
the variance, the third column shows 95% interval coverages, while the fourth
column is the ratio of estimated to Monte Carlo standard errors.

outcome models as described in Section 4 and apply either regression based estimators that only utilize
the outcome model and marginalize over the covariate distribution, or the doubly robust estimator
that was introduced in Kennedy et al. (2017). We will refer to the regression based estimators as
Reg-1, Reg-3, and Reg-GP to denote the amount of nonlinearity allowed. The doubly robust estimator
involves creating the pseudo-outcome:

ξ(Di,Ψ) =
Yi − E(Yi|Ti,Xi)

p(Ti = t|Xi)

∫
X
p(Ti = t|Xi)dPn(X) +

∫
X
E(Yi|Ti,Xi)dPn(X), (6)

where Pn is the empirical distribution of the data. Then, this pseudo-outcome is regressed against
the treatment, potentially in a flexible, nonlinear manner. We use this estimator for treatment and
outcome models built using the Bayesian machinery above to reduce the dimension of the covariate
space, and perform inference using the resampling approach described in Section 3. Both the treatment
and outcome models assume normality of the outcome. To assess the performance of the various
methods at estimating the whole curve, we will evaluate the performance of each method at 20 distinct
locations on the curve and average relevant metrics such as bias or interval coverage across the 20
locations. We will use cubic polynomials to model the exposure-response curve which encaptures the
true curve, though any flexible approach could work here.

Figure 3 shows the results averaged across 1000 simulations. The Reg-1 estimator does very poorly
in terms of MSE and interval coverages, which is expected because it assumes linearity, when the true
model is highly nonlinear. The Reg-3, Reg-GP, and Bayes-DR approaches all allow for nonlinear
relationships between the covariates and treatment/outcome, and therefore these approaches perform
well with respect to all metrics. Again, the Bayes-DR estimator achieves interval coverages at or near
the nominal level of 95%. The right panel of Figure 3 shows that the Bayes-DR estimator generally
estimates the entire curve well, with very few simulations deviating from the true shape.

6.3 Summary of additional simulation results

In Appendices D-H we present additional simulation results using different data generating mecha-
nisms, different p/n ratios, misspecified models, models that do not assume additivity, and bootstrap
inference for the competing approaches. We find similar results under different data generating mech-
anisms that show that our approach does well in terms of MSE and finite sample interval coverage.
As we increase the sample size and p/n ratio, this difference disappears as the asymptotic standard
errors of existing approaches perform much better. Even though the bootstrap is not theoretically
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Figure 3: Simulation results for continuous treatments. The top left panel
presents the mean squared error, the top right panel shows the 95% credible
interval coverage, the bottom left panel shows the ratio of estimated to Monte
Carlo standard errors, and the bottom right panel shows the estimates of the
exposure-response curve across the 1000 simulations for the doubly robust esti-
mator.

justified for every competing approach, we applied it to assess if our approach to inference performs
better only due to the fact that it was the only approach using resampling. We found that bootstrap
intervals were excessively large due to the erratic nature of the estimators in small samples, leading
to interval coverages of 100% and very little power to detect signals. As the sample size increased,
this problem also disappears and the bootstrap intervals perform very well, though only in scenarios
when the asymptotic intervals also perform well.

7 Application to EWAS

Environmental wide association studies (EWAS) have been increasingly common in recent years as
scientists attempt to gain a better understanding of how various chemicals and toxins affect the
biological processes in the human body (Wild, 2005; Patel & Ioannidis, 2014). In particular, EWAS
look to study the effects of a large number of exposures that humans are invariably exposed to on
disease or other functions in the body. The National Health and Nutrition Examination Survey
(NHANES) is a cross-sectional data source made publicly available by the Centers for Disease Control
and Prevention (CDC). We will restrict attention to the 1999-2000, 2001-2002, 2003-2004, and 2005-
2006 surveys, and we will aim to estimate the effects of environmental exposures on three different
outcomes: HDL cholesterol levels, LDL cholesterol levels, and triglyceride levels in humans. We
will use the data in Wilson et al. (2018), which studied the impact of environmental agents from
the NHANES data. The study contains a large number of potential confounders as participants fill
out questionnaires regarding their health status, and receive clinical and laboratory tests that contain
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information on environmental factors such as pollutants, allergens, bacterial/viral organisms, chemical
toxicants, and nutrients. In previous work (Patel et al. , 2012), the environmental agents whose effect
we estimate were separated into groups containing similar agents that might act through similar
biological pathways. We will look at the effects of 14 different environmental agent groups on the
three outcomes, leading to 42 different analyses. Each exposure we look at is defined as the average
exposure level across all agents within the same grouping. In the NHANES data, different subjects
had different environmental agents measured, leading to different populations, covariate dimensions,
and sample sizes for each of the 14 exposures. We apply our Bayesian models in conjuction with the
doubly robust estimator of Kennedy et al. (2017) to estimate the exposure response curves in each
of the 42 analyses. Both p and n vary for each data set and there is a wide range of p/n ratios from
0.08 to 0.51, with a mean of 0.25.

7.1 Differing levels of nonlinearity and sparsity

To analyze the data we fit a treatment model and an outcome model under each of the three levels of
flexibility that we used in the simulation study. This includes a linear function of the covariates, three
degree of freedom splines, and Gaussian processes. For each data set we looked at the WAIC of both
the treatment and outcome model, and used the model with the minimum WAIC. Figure 4 shows
histograms of the ratio of the WAIC values with the minimum WAIC within a given dataset across
the three models. A value of one indicates that a particular model had the best WAIC, while larger
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Figure 4: The top panel presents the ratio of WAIC values to the minimum values
for each of the three models considered. The top left panel shows the treatment
model WAIC values, while the top right panel shows the WAIC for the outcome
models. The bottom panel shows the percentage of covariates included in the
chosen treatment and outcome model.
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values indicate worse fits to the data. We see that for the treatment model, the Gaussian process prior
is selected more than any other model and most of the values in the histogram are less than 1.05.
Linear models do the next best and have the lowest WAIC for a number of datasets. For the outcome
model, the linear model does best, followed by the Gaussian process prior and spline model, which
do similarly well. Overall, these plots suggest that different amounts of flexibility were required in
these analyses, and our flexible approach might be more accurately depicting the true data generating
processes.

We also examine the extent to which our sparsity inducing priors reduced the dimension of the
covariate space. While our models provide posterior inclusion probabilities, we can report a binary
assessment of a variable’s importance by reporting whether the posterior inclusion probability is greater
than 0.5. Figure 4 shows the percentage of covariates that have a posterior inclusion probability greater
than 0.5 in the treatment and outcome models. It is clear that the spike and slab priors greatly reduce
the number of covariates in both models as all datasets have less than 30% of the covariates in
the models, and many less than 10%. Not shown in the figure is that there are even fewer covariates
included in both models, indicating that there is not a lot of strong confounding within these datasets.
This is further supported by the fact that many of the estimated exposure response curves are very
similar to the curves one would get by not controlling for any covariates.

7.2 Exposure response curves

We highlight the estimation of the exposure response curves for three of the exposures in the analysis:
Dioxins, Organochlorine pesticides, and Diakyl. The p/n ratio for these three analyses was 0.41, 0.18,
and 0.34, respectively. Figure 5 shows the doubly robust estimate of the exposure response curve along
with the naive curve one would get by not including any covariates in the analysis. The two estimated
curves are fairly similar with a couple of exceptions. The effect of OC pesticides on Triglycerides has
a much smaller slope when adjusting for covariates, and the effect of Diakyl on Triglycerides is much
larger at lower levels of exposure when adjusting for covariates. In some areas of the curves there
is less uncertainty in the doubly robust estimate, however, in general the naive curves have tighter
uncertainty intervals. This is not entirely surprising as the doubly robust estimators are adjusting for
a large number of covariates, which can decrease efficiency unless the covariates are highly predictive
of the outcome. Importantly, the confidence intervals of the doubly robust estimator are not much
wider than the naive curves, indicating that the dimension reduction from the spike and slab priors
improves efficiency.

8 Discussion

We have introduced an approach for causal inference that has a number of desirable features. Our
approach can be applied to semiparametric estimators of causal effects that rely on a treatment or
outcome model, in the context of binary, categorical, or continuous treatments. This is particularly
important as the literature on estimating the causal effect curve for continuous treatments is small,
and has not been extended to high-dimensional scenarios. We showed our approach maintains asymp-
totic properties such as double robustness and posterior contraction rates, while showing improved
performance in finite samples. In particular, our approach to inference is able to capture all of the
uncertainty in the data, leading to nominal interval coverages when frequentist counterparts that rely
on asymptotics have decreased interval coverage. Further, flexible Bayesian methods allow our ap-
proach to adapt to nonlinear relationships in the treatment and outcome models, reducing the impact
of model misspecification. Our approach has widespread applicability, as many causal estimators can
be written as functions of data and treatment and outcome models, and the ideas seen here will ap-
ply directly. This allows users to estimate causal effects using many desirable Bayesian tools such
as nonparametric priors and spike and slab priors. While we focused on high-dimensional scenarios
with spike and slab priors in this paper, the ideas presented apply to any type of modeling framework
for the treatment and outcome models. Throughout, we have assumed that the treatment effect is
homogeneous, i.e. that the treatment effect is constant across all levels of the covariate space. This
assumption can easily be removed by using more flexible Bayesian methods for the outcome model.

Doubly robust estimation was first introduced in the Bayesian framework in Saarela et al. (2016),
although there has been some debate about whether an estimate of counterfactual outcomes can utilize
the propensity score within the Bayesian framework (Saarela et al. , 2015). Robins & Ritov (1997)
showed that any Bayesian analysis honoring the likelihood principle can not utilize the propensity
score. We take a somewhat different approach in this paper, as we do not attempt to address these
concerns, nor are we concerned with whether or not the proposed approach is “fully” Bayesian. Our
purpose is to show that Bayesian methods can be coupled with estimating equation based estimators
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Figure 5: Estimated exposure response curves from the doubly robust estimator
(black line) as well as the naive curve (red line), which does not adjust for any
covariates.

in causal inference to provide flexible alternatives with desirable finite sample properties. This is
even more important in high-dimensional scenarios where model uncertainty is higher and relying on
asymptotics does not work well.

An important point is understanding why our approach to uncertainty estimation does better in
finite samples than existing approaches rooted in asymptotic theory. Asymptotic approaches rely on
certain terms vanishing as the sample size increases, and ignoring these additional terms can lead
to anti-conservative inference in small samples. The sole manner in which our approach relies on
asymptotics is that the bootstrap is only valid asymptotically. We account for parameter uncertainty
through the posterior distribution which does not rely on asymptotics. Then, the bootstrap is used
to account for the additional uncertainty in the estimators stemming from the observed data for fixed
values of the parameters. When the parameters are fixed, the estimator has a simple form and the
bootstrap should perform well in estimating uncertainty for simple quantities such as this. We have
seen empirically that it works quite well and leads to nominal frequentist coverage. As the sample
size increases, any differences in these two approaches to inference should dissipate.
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Appendices

A Proof of posterior contraction rates

Proof: For simplicity we will drop the pt,mt notation in Equation 10 and write the quantity of interest
as follows:

sup
P0

EP0Pn(|µt − µ∗t | > Mεn|D) = sup
P0

EP0Pn

(
1

n

∣∣∣∣∣
n∑
i=1

1(Ti = t)

pti
(Yi −mti) +mti − µ∗t

∣∣∣∣∣ > Mεn|D

)

= sup
P0

EP0
Pn

(
1

n

∣∣∣∣∣
n∑
i=1

1(Ti = t)

pti
(Yi −mti) +mti

− 1(Ti = t)

p∗ti
(Yi −m∗ti)−m∗ti

+
1(Ti = t)

p∗ti
(Yi −m∗ti) +m∗ti − µ∗t

∣∣∣∣∣ > Mεn|D

)

= sup
P0

EP0Pn

(∣∣∣∣∣A+B

∣∣∣∣∣ > Mεn|D

)
.

where we can define A and B as follows:

A =
1

n

n∑
i=1

1(Ti = t)

pti
(Yi −mti) +mti −

1(Ti = t)

p∗ti
(Yi −m∗ti)−m∗ti

B =
1

n

n∑
i=1

1(Ti = t)

p∗ti
(Yi −m∗ti) +m∗ti − µ∗t

After re-arranging some terms, we can further decompose A into three separate parts such that
A = A1 +A2 +A3 where each are defined below:

A1 =
1

n

n∑
i=1

(mti −m∗ti)

(
1− 1(Ti = t)

p∗ti

)

A2 =
1

n

n∑
i=1

1(Ti = t)(pti − p∗ti)(m∗ti − Yi)
ptip∗ti

A3 =
1

n

n∑
i=1

1(Ti = t)(pti − p∗ti)(mti −m∗ti)
ptip∗ti

.

We can now write the probability as

sup
P0

EP0Pn(|µt − µ∗t | > Mεn|D) = sup
P0

EP0Pn(|A1 +A2 +A3 +B| > Mεn|D)

≤ sup
P0

EP0
Pn(|A1| >

M

4
εn|D) + sup

P0

EP0
Pn(|A2| >

M

4
εn|D)

+ sup
P0

EP0
Pn(|A3| >

M

4
εn|D) + sup

P0

EP0
Pn(|B| > M

4
εn|D),

so it now suffices to show that each of the four components above contracts at the εn rate. We
will begin with the B component, which does not depend on either the posterior distribution of the
treatment or outcome model as it is simply the doubly robust estimator of µ1 evaluated at the true
values for the propensity score and outcome regression minus the parameter of interest.

sup
P0

EP0Pn(|B| > M

4
εn|D) = sup

P0

EP0
Pn

(∣∣∣∣∣ 1n
n∑
i=1

1(Ti = t)

p∗ti
(Yi −m∗ti) +m∗ti − µ∗t

∣∣∣∣∣ > M

4
εn|D

)

= sup
P0

EP0
1

(∣∣∣∣∣ 1n
n∑
i=1

1(Ti = t)

p∗ti
(Yi −m∗ti) +m∗ti − µ∗t

∣∣∣∣∣ > M

4
εn

)
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= sup
P0

PP0

(∣∣∣∣∣ 1n
n∑
i=1

1(Ti = t)

p∗ti
(Yi −m∗ti) +m∗ti − µ∗t

∣∣∣∣∣ > M

4
εn

)
.

The second equality holds because all of the components of B are components of D and are therefore
just constants when conditioning on D. The quantity inside of the absolute values is easily shown to
have expectation 0 with respect to P0 and therefore we can apply Chebyshev’s inequality to say:

sup
P0

EP0Pn(|B| > M

4
εn|D) ≤ sup

P0

16VarP0(B)

M2ε2n

= sup
P0

16σ2
B

M2ε2nn

where σ2
B = VarP0

(
1(Ti=t)
p∗ti

(Yi − m∗ti)

)
≤ KB < ∞, for some constant KB by assumption 1 and

positivity. Clearly if εn > n−1/2 then this probability goes to zero and we have the desired result.
Now, turning attention to A1 let us first find En(A1|D), the posterior mean of A1.

En(A1|D) = En

(
1

n

n∑
i=1

(mti −m∗ti)

(
1− 1(Ti = t)

p∗ti

)
|D

)

=
1

n

n∑
i=1

(
1− 1(Ti = t)

p∗ti

)
En

(
(mti −m∗ti|D

)
.

This quantity is nonzero and therefore we can not directly apply Chebyshev’s inequality. We will add
and subtract the posterior mean as follows:

sup
P0

EP0
Pn(|A1| >

M

4
εn|D) = sup

P0

EP0
Pn(|A1 − E(A1|D) + E(A1|D)| > M

4
εn|D)

≤ sup
P0

EP0Pn(|A1 − E(A1|D)| > M

8
εn|D)

+ sup
P0

EP0
Pn(|E(A1|D)| > M

8
εn|D)

Our goal is now to show that both of these quantities tend to 0 as n→∞. We can use Chebyshev’s
inequality on the first of the two probabilities to see that

sup
P0

EP0
Pn(|A1 − E(A1|D)| > M

8
εn|D) ≤ sup

P0

EP0

64Varn(A1|D)

M2ε2n

= sup
P0

EP0

64σ2
A11

M2ε2nn

where EP0
(σ2
A11

) = EP0
Varn

(
(mti −m∗ti)

(
1 − 1(Ti=t)

p∗ti

)
|D

)
≤ KA11

< ∞, for some constant KA11

by assumption 2 and positivity. Clearly, this limit goes to zero as long as εn > n−1/2. Now we can
turn our attention to the second probability below:

sup
P0

EP0
Pn(|E(A1|D)| > M

8
εn|D).

Notice, however, that E(A1|D) is constant with respect to the posterior distribution of the parameters
given D, and therefore this quantity simplifies to

sup
P0

PP0
(|E(A1|D)| > M

8
εn) = sup

P0

PP0

(∣∣∣ 1
n

n∑
i=1

(
1− 1(Ti = t)

p∗ti

)
En

(
(mti −m∗ti|D

)∣∣∣ > M

8
εn

)
.

We will again use Chebyshev’s inequality to bound this quantity, but first we need to show that the
quantity inside the absolute value has expectation 0 with respect to P0.

EP0

(
1

n

n∑
i=1

(
1− 1(Ti = t)

p∗ti

)
En

(
(mti −m∗ti)|D

))

14



= EP0

((
1− 1(Ti = t)

p∗ti

)
En

(
(mti −m∗ti)|D

))

= EY (t),X

[
ET |Y (t),X

((
1− 1(Ti = t)

p∗ti

)
En

(
(mti −m∗ti)|D

))]

= EY (t),X

[
En

(
(mti −m∗ti|D

)
ET |Y (t),X

(
1− 1(Ti = t)

p∗ti

)]

= EY (t),X

[
En

(
(mti −m∗ti|D

)
ET |X

(
1− 1(Ti = t)

p∗ti

)]

= EY (t),X

[
En

(
(mti −m∗ti|D

)(
1− p∗ti

p∗ti

)]
= 0.

Where the fourth equality held due to the unconfoundedness assumption. Now we can apply Cheby-
shev’s inequality to see that

sup
P0

PP0

(∣∣∣ 1
n

n∑
i=1

(
1− 1(Ti = t)

p∗ti

)
En

(
(mti −m∗ti|D

)∣∣∣ > M

8
εn

)
≤ sup

P0

64σ2
A12

M2ε2nn
,

where σ2
A12

= VarP0

((
1 − 1(Ti=t)

p∗ti

)
En

(
(mti − m∗ti)|D

))
≤ KA12

< ∞ for some constant KA12
by

assumption 2 and positivity. This expression goes to zero as long as εn > n−1/2. Now we can look at
A2, which has a similar construction as A1. Again, let us first calculate the posterior mean of A2.

En(A2|D) = En

(
1

n

n∑
i=1

1(Ti = t)(pti − p∗ti)(m∗ti − Yi)
ptip∗ti

)
|D

)

=
1

n

n∑
i=1

(
1(Ti = t)(m∗ti − Yi)

p∗ti

)
En

(
pti − p∗ti
pti

|D

)
.

Again, this quantity does not necessarily have mean 0 and therefore we can not directly apply Cheby-
shev’s inequality, but we can add and subtract the mean as before.

sup
P0

EP0
Pn(|A2| >

M

4
εn|D) = sup

P0

EP0
Pn(|A2 − E(A2|D) + E(A2|D)| > M

4
εn|D)

≤ sup
P0

EP0Pn(|A2 − E(A2|D)| > M

8
εn|D)

+ sup
P0

EP0
Pn(|E(A2|D)| > M

8
εn|D).

Our goal is to show that both probabilities tend to zero and we have the desired result. For the first
expression we can apply Chebyshev’s inequality, since the quantity has mean 0:

sup
P0

EP0
Pn(|A2 − E(A2|D)| > M

8
εn|D) ≤ sup

P0

EP0

64Varn(A2|D)

M2ε2n

= sup
P0

EP0

64σ2
A21

M2ε2nn

where EP0
(σ2
A21

) = EP0
Varn

(
1(Ti=t)(pti−p∗ti)(m

∗
ti−Yi)

ptip∗ti
|D

)
≤ KA21

< ∞ for some constant KA21
by

assumptions 1, 2, and positivity. Clearly, this limit goes to zero as long as εn > n−1/2. Now we can
turn our attention to the second probability below:

sup
P0

EP0Pn(|E(A2|D)| > M

8
εn|D).
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Notice, however, that E(A2|D) is constant with respect to the posterior distribution of the parameters
given D, and therefore this quantity simplifies to

sup
P0

PP0
(|E(A2|D)| > M

8
εn) = sup

P0

PP0

(
1

n

n∑
i=1

(
1(Ti = t)(m∗ti − Yi)

p∗ti

)
En

(
pti − p∗ti
pti

|D

)
>
M

8
εn

)
.

We will again use Chebyshev’s inequality to bound this quantity, but first we need to show that the
quantity inside the absolute value has expectation 0 with respect to P0.

EP0

(
1

n

n∑
i=1

(
1(Ti = t)(m∗ti − Yi)

p∗ti

)
En

(
pti − p∗ti
pti

|D

))

= EP0

((
1(Ti = t)(m∗ti − Yi)

p∗ti

)
En

(
pti − p∗ti
pti

|D

))

= ET,X

[
EY |T,X

((
1(Ti = t)(m∗ti − Yi)

p∗ti

)
En

(
pti − p∗ti
pti

|D

))]

= ET,X

[(
1(Ti = t)

p∗ti

)
En

(
pti − p∗ti
pti

|D

)
EY |T,X(m∗ti − Yi)

]

= ET,X

[(
1(Ti = t)

p∗ti

)
En

(
pti − p∗ti
pti

|D

)
(m∗ti −m∗ti)

]
= 0

Now we can apply Chebyshev’s inequality to see that

sup
P0

PP0

(∣∣∣∣∣ 1n
n∑
i=1

(
1(Ti = t)(m∗ti − Yi)

p∗ti

)
En

(
pti − p∗ti
pti

|D

)∣∣∣∣∣ > M

8
εn

)
≤ sup

P0

64σ2
A22

M2ε2n
,

where σ2
A22

= VarP0

((
1(Ti=t)(m

∗
ti−Yi)

p∗ti

)
En

(
pti−p∗ti
pti
|D

))
≤ KA22 < ∞ for some constant KA22 by

assumptions 1, 2, and positivity. This expression goes to zero as long as εn > n−1/2. Finally, we need
to show contraction rates for A3, which is where the double robustness property can be seen for the
posterior distribution of µt.

sup
P0

EP0
Pn(|A3| >

M

4
εn|D)

= sup
P0

EP0Pn

(∣∣∣∣∣ 1n
n∑
i=1

1(Ti = t)(pti − p∗ti)(mti −m∗ti)
ptip∗ti

∣∣∣∣∣ > M

4
εn|D

)

≤ sup
P0

EP0
Pn

(√√√√ 1

n

n∑
i=1

(
1(Ti = t)(pti − p∗ti)

ptip∗ti

)2
√√√√ 1

n

n∑
i=1

(mti −m∗ti)2 >
M

4
εn|D

)

≤ sup
P0

EP0Pn

(√√√√ 1

n

n∑
i=1

KA31(pti − p∗ti)2

√√√√ 1

n

n∑
i=1

(mti −m∗ti)2 >
M

4
εn|D

)

= sup
P0

EP0
Pn

(
1

n
||pt − p∗t || ||mt −m∗t || >

Mεn

4
√
KA31

|D

)
.

The first inequality comes from the Cauchy-Schwartz inequality, and the second inequality holds true
for some constant 0 < KA31

< ∞ from assumption 2. Using the law of total probability we can
separate this probability into scenarios when the outcome model contracts at rate εν1n , and when it
doesn’t.

sup
P0

EP0
Pn(|A3| >

M

4
εn|D)

≤ sup
P0

EP0

[
Pn

(
1√
n
||pt − p∗t || >

Mεn

4
√
KA31

1√
n
||mt −m∗t ||

|D, 1√
n
||mt −m∗t || < εν1n

)

× Pn

(
1√
n
||mt −m∗t || < εν1n |D

)
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+ Pn

(
1√
n
||pt − p∗t || >

Mεn

4
√
KA31

1√
n
||mt −m∗t ||

|D, 1√
n
||mt −m∗t || ≥ εν1n

)

× Pn

(
1√
n
||mt −m∗t || ≥ εν1n |D

)]
First, let’s assume that the outcome model contracts at the εν1n rate, i.e sup

P0

EP0
Pn( 1√

n
||mt −m∗t || <

εν1n |D)→ 1.

sup
P0

EP0
Pn(|A3| >

M

4
εn|D)

≤ sup
P0

EP0

[
Pn

(
1√
n
||pt − p∗t || >

Mεn

4
√
KA31

1√
n
||mt −m∗t ||

|D, 1√
n
||mt −m∗t || < εν1n

)

× Pn

(
1√
n
||mt −m∗t || < εν1n |D

)]

+ sup
P0

EP0

[
Pn

(
1√
n
||mt −m∗t || ≥ εν1n |D

)]

≤ sup
P0

EP0

[
Pn

(
1√
n
||pt − p∗t || >

Mεn

4
√
KA31

1√
n
||mt −m∗t ||

|D, 1√
n
||mt −m∗t || < εν1n

)]

+ sup
P0

EP0

[
Pn

(
1√
n
||mt −m∗t || ≥ εν1n |D

)]

≤ sup
P0

EP0

[
Pn

(
1√
n
||pt − p∗t || >

Mεn

4
√
KA31ε

ν1
n

|D

)]
+ sup

P0

EP0

[
Pn

(
1√
n
||mt −m∗t || ≥ εν1n |D

)]

= sup
P0

EP0

[
Pn

(
1√
n
||pt − p∗t || >

Mε1−ν1n

4
√
KA31

|D

)]
+ sup

P0

EP0

[
Pn

(
1√
n
||mt −m∗t || ≥ εν1n |D

)]
.

The first of these two expressions converges to 0 if the treatment model contracts at the ε1−ν1n rate.
The second expression converges to 0 by the definition of posterior contraction for the outcome model.
This shows that if both the treatment and outcome model contract, then the posterior of the average
treatment effect contracts at a faster rate than either of the individual models. We saw earlier that
A1, A2, and B contract at the εn = n−1/2 rate and therefore the average treatment effect can not
contract any faster than n−1/2. This result shows that our posterior contracts at the n−1/2 rate if the
product of the contraction rates for the treatment and outcome model is less than or equal to n−1/2.
If the product is larger than n−1/2 then the posterior of the treatment effect converges at the product
of the contraction rates for the treatment and outcome models. This is a Bayesian analog to results
seen in Farrell (2015), and shows that we can use flexible or high-dimensional models and obtain fast
posterior contraction rates due to the double robustness property. Now, let’s examine the situation
when the outcome model does not contract, i.e sup

P0

EP0Pn( 1√
n
||mt −m∗t || < εν1n |D) → 0 for any ν1

such that εν1n → 0.

sup
P0

EP0
Pn(|A3| >

M

4
εn|D)

≤ sup
P0

EP0

[
Pn

(
1√
n
||pt − p∗t || >

Mεn

4
√
KA31

1√
n
||mt −m∗t ||

|D, 1√
n
||mt −m∗t || < εν1n

)

× Pn

(
1√
n
||mt −m∗t || < εν1n |D

)

+ Pn

(
1√
n
||pt − p∗t || >

Mεn

4
√
KA31

1√
n
||mt −m∗t ||

|D, 1√
n
||mt −m∗t || ≥ εν1n

)

× Pn

(
1√
n
||mt −m∗t || ≥ εν1n |D

)]

≤ sup
P0

EP0

[
Pn

(
1√
n
||mt −m∗t || < εν1n |D

)]
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+ sup
P0

EP0

[
Pn

(
1√
n
||pt − p∗t || >

Mεn

4
√
KA31

1√
n
||mt −m∗t ||

|D, 1√
n
||mt −m∗t || ≥ εν1n

)]

≤ sup
P0

EP0

[
Pn

(
1√
n
||mt −m∗t || < εν1n |D

)]
+ sup

P0

EP0

[
Pn

(
1√
n
||pt − p∗t || >

Mεn

4
√
KA31

KA32

|D

)]
.

The last inequality holds for some constant 0 < KA32
<∞ by assumption 2. The first expression goes

to zero since the outcome model is misspecified and does not contract at any rate, while the second
expression converges to zero if the treatment model contracts at rate εn. This shows that even if the
outcome model is misspecified, we get contraction of the treatment effect at a rate of either n−1/2

or εn, whichever is larger. This shows both the double robustness property and the contraction rate
of the posterior when only the treatment model is correctly specified. An analogous proof holds for
when the treatment model is misspecified and the outcome model contracts at a given rate, though
we leave out the proof as it is nearly identical to the one above.

B Details of posterior sampling

Here we will present the details required for posterior sampling from both the semiparametric and
nonparametric priors utilized. Throughout we will denote the full observed data as Di = (Yi, Ti,Xi).
First we will present the posterior sampling for the semiparametric prior that models the conditional
associations between the treatment/outcome and covariates using splines with d degrees of freedom.
We will be always be working with X being standardized to have mean zero and variance 1, which
is crucial when using spike and slab priors. Throughout, we will show how to estimate the outcome
model, but sampling from the treatment model is analagous with straightforward alterations. Finally,
we will be working with the latent outcome Y ∗i , where in the case of continuous data, Y ∗i = Yi. If
Yi is binary, then at every iteration of our MCMC we draw Y ∗i from a truncated normal distribution
with mean set to β0 + ft(Ti) +

∑p
j=1 fj(Xji) and variance set to 1. If Yi = 1 then this distribution is

truncated below by 0 and if Yi = 0 then it is truncated above by 0. Once we have obtained Y ∗i , then
posterior sampling can continue using the latent outcome as if we had linear regression, even if the
outcome is binary.

MCMC sampling for semiparametric prior

Below we detail the full conditional updates for all parameters in the model.

1. If Yi is binary then set σ2 = 1, and if the outcome is continuous draw σ2 from an inverse-gamma
distribution with parameters a∗ and b∗, defined as:

a∗ = aσ2 +
n

2
+
d
∑p
j=1 γj

2

b∗ = bσ2 +

∑n
i=1

(
Y ∗i − β0 − ft(Ti)−

∑p
j=1 fj(Xji)

)2
2

+

p∑
j=1

d∑
k=1

β2
jk

2σ2
β

2. While not discussed in the main text, we will be placing a IG(aσ2
β
, bσ2

β
) prior on σ2

β and therefore

we can update from the full conditional:

σ2
β|• ∼ IG

aσ2
β

+
d
∑p
j=1 γj

2
, bσ2

β
+

p∑
j=1

d∑
k=1

β2
jk

2σ2


3. Update θ from the full conditional:

θ|• ∼ B

aθ +

p∑
j=1

γj , bθ +

p∑
j=1

(1− γj)


4. To update γj for j = 1 . . . p we need to look at the conditional posterior that has marginalized

over βj . Specifically, if we allow Λ to represent all parameters in the model except for (γj ,βj)
then we can update γj from the following conditional distribution:

p(γj = 1|D,Λ) =
p(βj = 0, γj = 1|D,Λ)

p(βj = 0|γj = 1,D,Λ)
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=
p(D,Λ|βj = 0, γj = 1)p(βj = 0, γj = 1)

p(D,Λ)p(βj = 0|γj = 1,D,Λ)

=
p(D,Λ|βj = 0)p(βj = 0, γj = 1)

p(D,Λ)p(βj = 0|γj = 1,D,Λ)

∝ p(βj = 0, γj = 1)

p(βj = 0|γj = 1,D,Λ)

=
θ Φ(0; 0,Σβ)

Φ(0;M ,V )

where Φ() represents the multivariate normal density function. M and V represent the condi-
tional posterior mean and variance for βj when γj = 1 and can be defined as

M =

(
X̃T
j X̃j

σ2
+ Σ−1β

)−1
X̃T
j Ỹ , V =

(
X̃T
j X̃j

σ2
+ Σ−1β

)−1
,

where Ỹ = Y ∗ − β0 − ft(T ) −
∑
k 6=p fk(Xk) and Σβ is a d−dimensional diagonal matrix with

σ2σ2
β on the diagonals.

5. For j = 1 . . . p, if γj = 1 update βj from a multivariate normal distribution with mean M and
variance V as defined above. If γj = 0, then set βj = 0.

6. We will jointly update β0 and ft(T ). For now we will let ft(T ) = βtT , though the full conditional
will take the same form even if we model ft(T ) with polynomials or splines. Define Zt = [1′,T ],
then the full conditional is of the form

(β0, βt)|• ∼MVN

((
ZTt Zt
σ2

+ Σ−1t

)−1
ZTt Ỹ ,

(
ZTt Zt
σ2

+ Σ−1t

)−1)

where Ỹ = Y ∗ −
∑p
j=1 fj(Xj) and Σt is a diagonal matrix with K on the diagonals, with K

large so that the treatment effect is not heavily shrunk towards zero.

MCMC sampling with gaussian process priors

Now we will detail the posterior sampling for the model defined in Section 2.2.

1. Update (θ, β0, βt) using the same updates as above for the semiparametric prior specification.

2. To update γj for j = 1 . . . p we need to look at the conditional posterior that has marginalized
over fj(Xj). Specifically, if we allow Λ to represent all parameters in the model except for
(γj , fj(Xj)) then we can update γj from the following conditional distribution:

p(γj = 1|D,Λ) =
p(fj(Xj) = 0, γj = 1|D,Λ)

p(fj(Xj) = 0|γj = 1,D,Λ)

=
p(D,Λ|fj(Xj) = 0, γj = 1)p(fj(Xj) = 0, γj = 1)

p(D,Λ)p(fj(Xj) = 0|γj = 1,D,Λ)

=
p(D,Λ|fj(Xj) = 0)p(fj(Xj) = 0, γj = 1)

p(D,Λ)p(fj(Xj) = 0|γj = 1,D,Λ)

∝ p(fj(Xj) = 0, γj = 1)

p(fj(Xj) = 0|γj = 1,D,Λ)

=
θ Φ(0; 0, σ2τ2Σj)

Φ(0;M ,V )

where Φ() represents the multivariate normal density function. M and V represent the condi-
tional posterior mean and variance for fj(Xj) when γj = 1 and can be defined as

M =

(
In +

1

τ2j
Σ−1j

)−1
Ỹ , V =

(
In +

1

τ2j
Σ−1j

)−1
,

where Ỹ = Y ∗ − β0 − ft(T )−
∑
k 6=p fk(Xk).

3. For j = 1 . . . p, if γj = 1 update fj(Xj) from a multivariate normal distribution with mean M
and variance V as defined above. If γj = 0, then set fj(Xj) = 0.
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4. If γj = 0, update τ2j from it’s prior distribution, which is a Gamma(1/2, 1/2). If γj = 1, update

τ2j from the following distribution:

IG

(
n+ 1

2
,

1

2
+
fj(Xj)

TΣ−1j fj(Xj)

2σ2

)

5. If Yi is binary then set σ2 = 1, and if the outcome is continuous draw σ2 from an inverse-gamma
distribution with parameters a∗ and b∗ defined as:

a∗ = aσ2 +
n(1 +

∑p
j=1 γj)

2

b∗ = bσ2 +

∑n
i=1

(
Y ∗i − β0 − ft(Ti)−

∑p
j=1 fj(Xji)

)2
2

+

p∑
j=1

γjfj(Xj)
TΣ−1j fj(Xj)

2τ2j

One thing to note is that in the conditional updates for (γj , fj(Xj)), we must calculate
(
In + 1

τ2
j
Σ−1j

)−1
,

which means inverting an n by n matrix at every MCMC iteration. To avoid this, we can first compute
the singular value decomposition, Σj = ABAT , where A is a matrix of eigenvectors and B is a diag-

onal matrix of eigenvalues. From this, it can be shown that
(
In + 1

τ2
j
Σ−1j

)−1
= A

(
In + B−1

τ2
j

)−1
AT ,

which only requires inverting a diagonal matrix and can be computed much faster.

C Understanding the variance estimate

Throughout we use the subscript D to denote the distribution of the observed data, D(m) to denote
the empirical distribution of the data from which we draw new data sets, and Dobs is the observed
data.

In this section, we explicitly write out the error in using VarD(m)

[
EΨ|Dobs

(
∆(D(m),Ψ)

)]
as the

estimate for the variance VarD
[
EΨ|D

(
∆(D,Ψ)

)]
. This will provide insight as to why the variance

correction tends to recover the true variance or a conservative estimate, leading to nominal coverage
rates. We can write out their difference as follows:

Difference = VarD

[
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)]
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.

The first approximation stems from the fact that we replaced ED(m) with ED. This is a reasonable
approximation as the distribution of D(m) is the empirical distribution of a sample from the distri-
bution of D. The second approximation stems from the fact that the average of the posterior mean
using the observed data posterior, EDEΨ|Dobs should closely resemble EDEΨ|D as the posterior mean
from one sample is a reasonable estimate of the posterior mean averaged over repeated samples.

We now look at the correction term, the term added to the initial variance. We show this term
closely resembles the difference above, thereby producing a variance estimate that is of the correct
magnitude.

Correction = ED(m)

[
VarΨ|Dobs

(
∆(D(m),Ψ)

)]
≈ ED

[
VarΨ|Dobs

(
∆(D,Ψ)

)]
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[
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(
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(
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Again, the approximation stems from the fact that we replace ED(m) with ED. Note that the second
term in the correction is exactly the same as the second term in the difference.

The question is whether the first term in the variance correction ED
[
EΨ|Dobs

(
∆(D,Ψ)2

)]
is of a

similar magnitude to the first term in the difference ED
[
E2

Ψ|D
(
∆(D,Ψ)

)]
. We see that the first term

in the correction involves the second moment of ∆ with respect to Ψ|Dobs, while the first term in
the difference involves the first moment with respect to Ψ|D squared. It is difficult to compare these
two terms with any certainty as they refer to moments with respect to different distributions. Due to
Jensen’s equality, we generally expect the second moment to be larger than the first moment squared.
While this cannot be shown to be true in general, because these two quantities refer to different
posterior distributions, this provides some evidence that our correction will lead to a conservative
estimate of the variance. In Appendix H we evaluate how this correction does across all simulation
scenarios looked at, and we see that it always leads to estimates of the variance that are close to the
sampling distribution variance as desired, and generally are slightly conservative.

D Using the bootstrap for competing approaches

Here, we will assess whether bootstrapping the competing approaches can provide improved inference
over the asymptotic intervals used in the manuscript. Bootstrapping is justified and has been used
for both TMLE (Schnitzer et al. , 2015) and double machine learning (Knaus, 2018). For the other
estimators, it is not clear whether the standard nonparametric bootstrap would provide valid infer-
ence, however, here we will perform inference using the nonparametric bootstrap for all competing
approaches to evaluate whether it provides better finite sample performance. This is to address the
question of whether our approach is only doing better in finite samples because we are resampling,
while the other approaches are not. The results of the two approaches to inference can be seen in
Figure A.1.

In the left panel, we see the results seen in the manuscript that show approaches based on asymp-
totic confidence intervals are anti-conservative and obtain confidence interval coverages well below
the nominal level. In the right figure, we see that the bootstrap intervals present the opposite prob-
lem. With the exception of the residual de-biasing approach that achieves low coverages due to large
amounts of bias in the estimator, most estimators have confidence interval coverages at 100% or 99%
in the case of the lasso-DR approach. These intervals are far too wide with average estimated standard
errors well above two times the standard error of the estimators. This indicates that these intervals
are extremely conservative and lead to confidence intervals that are far too wide. This is due to the
erratic nature of the bootstrapped estimators in small samples when variable selection is involved in
the estimation procedure.

To assess whether these approaches to inference correct themselves as the sample size increases, we
tried the same test, but with n = 400 and p = 50. The results can be seen in Figure A.2. We see that
when we are in a scenario with a larger sample size and more favorable p/n ratio that both methods
to inference provide interval coverages very close to the nominal level for all approaches considered.

E Additional simulation scenarios

Here we will run a number of additional simulation scenarios to assess the performance of the proposed
approach. The first three scenarios will be in the binary treatment setting, while the fourth will look
at a continuous exposure response curve. The first two scenarios will be from sparse data generating
models that have different functional forms from the simulations in the paper, while the third scenario
looks at a non sparse setting to see how the method performs when the assumption of sparsity does
not hold. The fourth simulation differs from the continuous treatment simulation of the paper in that
it has linear relationships between the covariates and treatment / outcome instead of nonlinear ones.

Scenario 1

Here we will run an identical simulation to the linear simulation scenario from the manuscript with
n = 100 and p = 500, except now we will generate data from the following treatment and outcome
models:

µi = Ti + 0.45X1i + 0.7X2i − 0.6X3i + 1.3X4i − 0.5X5i

pi = Φ(0.35X1i + 0.2X2i − 0.3X3i − 0.4X5i)

The results of this simulation study can be seen in Figure A.3. We see that the proposed approach
does very well in terms of variance, as only the TMLE estimator is lower. All approaches with the
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Figure A.1: The left panel shows the results of the linear simulation study from
the manuscript using asymptotic standard errors for the competing approaches.
The right panel shows the same simulation study with bootstrap based confidence
intervals. In both figures, the Bayes-DR approach uses the approach to inference
seen in Section 4 of the manuscript.
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Figure A.2: Results from the linear simulation study with n = 400 and p =
50. The left panel shows the results using asymptotic standard errors for the
competing approaches. The right panel shows the same simulation study with
bootstrap based confidence intervals. In both figures, the Bayes-DR approach
uses the approach to inference seen in Section 4 of the manuscript.
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exception of TMLE had non-negligible bias so none of them obtain the nominal coverage rate. Our
approach, however, appears to be accounting for more of the finite sample uncertainty in the estimation
of the causal effect, which leads to a much higher coverage rate. Our approach has a ratio of the true
to Monte Carlo standard errors that is slightly above 1, while the remaining approaches with the
exception of the debiasing approach are far below 1. While not shown here, we again tried to use
bootstrapping approaches to fix the problems with undercoverage, and we found erratic confidence
intervals from the bootstrap that were far too wide and led to 100% coverages for the competing
approaches.

Scenario 2

Now, similarly to an experiment run by Belloni et al. (2014), we will generate data such that µi =
Ti + Xiβ, and pi = Φ(Xiα), where β = α = (1, 1/4, 1/9, . . . , 1/p2). This situation is not strictly
sparse as none of the coefficients are exactly zero, though it is approximately sparse in the sense that
a small number of confounders can remove essentially all of the confounding bias. We will set n = 100
and p = 300.

The results of this simulation study can be seen in Figure A.4. Most approaches have small bias
with the exception of TMLE and debiasing. The Lasso-DR and DML procedures have a very high
variance in this setting while the other approaches have similar variances to each other. The Double
PS, Lasso-DR, and DML procedures all obtain reasonable levels of coverage only slightly below the
nominal level, which is caused by the fact that the ratio of their estimated to true standard errors is
below 1. Our approach is slightly conservative in this setting as we obtain coverages slightly above
95% with a ratio of true to estimated standard errors that is around 1.2.

Scenario 3

Next, we will look at scenario that comes from Athey et al. (2018), where the propensity score is
dense. First we define 20 clusters, {c1, . . . , c20} where ck ∼ N (0, Ipxp). Second, we draw Ci uniformly
at random from one of the 20. Third, we draw the covariates from a multivariate normal distribution
centered at Ci with the identity matrix as the covariance. Fourth, we set Ti = 1 with probability
0.25 for the first 10 clusters, and Ti = 1 with probability 0.75 for the remaining clusters. Finally, we
generate data from the outcome model defined as Yi = 10Ti +Xβ + εi, where β ∝ (1, 12 , . . . ,

1
p ) and

is normalized such that ||β||22 = 18. Here we will again set n = 100 and p = 300. Intuitively, this is a
simulation scenario in which the outcome model is approximately sparse, though the treatment model
is dense as all of the covariates are associated with the treatment.

The results of this simulation study can be seen in Figure A.5. The Double PS approach works
the best in this setting in terms of bias and variance. This is probably due to the fact that it uses an
outcome model in the end to perform inference, and therefore is less affected by the dense propensity
model. Our approach has a higher variance due to the dense propensity score model, but importantly
still obtains 95% interval coverage as we seem to be accurately estimating the uncertainty in our
estimator.

Scenario 4

Here we will set n = 200 and p = 200. We will generate data from the following models:

Yi|Ti,Xi ∼ N (µyi , 1)

Ti|Xi ∼ N (µti, 1)

Xi ∼ N(0p, In),

where

µyi = 5− 0.1Ti + 0.05T 3
i + 0.5X1i + 0.5X2i − 0.3X5i

µti = 0.4X1i + 0.6X2i − 0.5X4i,

The results can be seen in Figure A.6. In this scenario, the confounding structure is linear and
therefore all of the approaches are able to achieve small amounts of bias. Unsurprisingly, the model
assuming linearity does the best of all the approaches, while the performance gets slightly worse in
terms of MSE as the amount of nonlinearity increases. Importantly though, the DR-Bayes estimator is
still able to achieve 95% interval coverages across the range of the exposure, and the ratio of estimated
to true standard errors is quite close to 1. This indicates that our strategy for variance estimation is
performing well and leading to valid inference.
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Figure A.3: Results from the first additional simulation scenario. The top left
panel shows absolute bias, the top right panel shows the variance, the bottom
left panel shows 95% interval coverages, while the bottom right panel is the ratio
of estimated to Monte Carlo standard errors.
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Figure A.4: Results from the second additional simulation scenario. The top left
panel shows absolute bias, the top right panel shows the variance, the bottom
left panel shows 95% interval coverages, while the bottom right panel is the ratio
of estimated to Monte Carlo standard errors.
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Figure A.5: Results from the third additional simulation scenario. The top left
panel shows absolute bias, the top right panel shows the variance, the bottom
left panel shows 95% interval coverages, while the bottom right panel is the ratio
of estimated to Monte Carlo standard errors.
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Figure A.6: Results from the fourth additional simulation scenario. The top
left panel shows mean squared error, the top right panel shows the 95% interval
coverages, the bottom left panel is the ratio of estimated to Monte Carlo standard
errors, and the bottom right panel shows the true exposure-response curve and
the simulated estimates of it.
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F Simulation without additivity of models

Here we show that additivity of the treatment and outcome models is not required for our approach as
long as there exists a Bayesian modeling approach that incorporates interactions among the variables
considered. To highlight this issue, we will use the SoftBart approach of Linero & Yang (2018), which
is an extension of the commonly used Bayesian Additive Regression Trees (BART, Chipman et al.
(2010)) to allow for smoother functions and high-dimensional covariate spaces. As this is a tree-based
approach, it naturally allows for interactions among the high-dimensional covariate space, thereby
alleviating the additivity assumptions used in the simulations of the main manuscript. We will use
SoftBart to estimate both the treatment and outcome models, and we will compare with linear models
that assume additivity and impose sparsity via spike-and-slab priors. Both models will be embedded
within our estimation and inferential strategy to combine posterior samples with resampling.

We will set n = 150 and p = 200, and generate covariates from independent, standard normal
distributions. We will generate data from the following models:

µi = Ti + 0.8X1i + 0.5X2i + 0.8X1iX2i + 0.6X3iX4i

pi = Φ(0.5X1i − 0.4X2i + 0.3X1iX2i + 0.4X3i).

The additive model will be misspecified for both the treatment and outcome models as there are
nonzero interaction terms in each model, while the SoftBart approach allows for such interactions
between the covariates. The results can be found in Table 1. We see that when the additive model is
used for the treatment and outcome models that there is a substantial bias of 29%. When SoftBart
is used for the two models, the bias drops to only 6% and the MSE is cut by more than half. In both
cases, we end up with reasonable ratios for the estimated to true standard errors, and the SoftBart
approach, due to it’s lack of bias, achieves close to nominal coverage rates.

Coverage SE ratio MSE absolute bias

SoftBart 0.924 0.96 0.08 6
Additive 0.852 1.17 0.17 29

Table 1: Results from simulation with interactions among the covariates. SE
ratio represents the ratio of the average estimated standard errors to the Monte
Carlo standard errors of the estimator.

G Inference when models are misspecified

Here we will evaluate the extent to which our approach to inference will work if one or both of the
models is misspecified. Clearly if both models are misspecified then the approach will likely not
attain 95% coverage, but we can still evaluate the ratio of estimated to true standard errors in this
setting. We will restrict to p = 10 in this setting as our question of interest is based more in model
misspecification, which we don’t want to conflate with the high-dimensional aspect of the procedure.
Our data generating models are either linear or squared functions of the covariates, though we assume
linear models for both the treatment and outcome in all cases. The ratio of the estimated to Monte
Carlo standard errors can be seen in Figure A.7. We can see that in any of the four scenarios considered,
our approach to inference either appropriately captures the uncertainty or is slightly conservative.
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Figure A.7: Ratio of the estimated to Monte Carlo standard errors when different
models are misspecified.

H Assessing impact of variance correction

In Section 3 of the manuscript we detailed our approach to variance estimation which entailed an
approximation to the variance of interest, plus a correction that attempts to eliminate anti-conservative
variances induced by error in the initial variance estimate. Here, we summarize the impact of this
correction on estimation across all scenarios looked at in the paper. Figure A.8 shows the ratio of the
estimated to true standard errors when only the approximate variance is used, as well as the ratio
when the correction is applied on top of the initial variance estimate. We see that in some scenarios,
such as the misspecification scenarios that were low-dimensional, the approximate variance is quite
good and is close to achieving a ratio of 1. In other scenarios, such as the nonlinear simulation from
the paper or the third appendix simulation, the approximation is nowhere near the correct variance,
achieving a ratio below 0.4. Importantly though, the correction brings these variances up to a ratio
close to, or above, 1 in nearly all scenarios. When the approximation is already doing quite well such
as the misspecification scenarios, the correction only adds a small amount as the initial variance is
already adequate. In scenarios where the approximation is poor, the variance correction dramatically
increases the variance estimate to the correct levels.

I Implementation of existing approaches

First we will detail how we implement the competing approaches for the linear simulation study.
For all estimators, linear models are assumed, in contrast to our approach that attempts to find the
degree of nonlinearity required. The residual de-biasing approach is implemented using the balanceHD
R package, which is available at github.com/swager/balanceHD. This R package estimates the
treatment effect and provides confidence intervals, with which we perform inference. The TMLE
approach is implemented using the tmle R package (Gruber & van der Laan, 2012). In the super
learner library for TMLE, we only included SL.glmnet, as the true model is contained within this
high-dimensional linear model. This package also gives both estimates and confidence intervals, which
is how we performed inference. For the double machine learning approach, we used sample splitting
with K = 5 splits and linear models based on the glmnet package (Friedman et al. , 2010) for both the
treatment and outcome model. We tried fitting the treatment and outcome model with the output from
lasso models, but also attempted fitting both the treatment and outcome models using post selection
estimates of both models. For the post selection estimates, we ran an initial variable selection step
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Figure A.8: Ratio of the estimated to Monte Carlo standard errors when only
the initial variance is used and when the correction is added.

using glmnet, and then fit unpenalized models for both treatment and outcome. We found that the post
selection estimators worked best for the double machine learning approach, and therefore we present
them throughout the paper. We performed inference using the asymptotic standard errors derived
in Chernozhukov et al. (2016). For the double post selection approach, we fit lasso models for both
the treatment and outcome using glmnet with the tuning parameter chosen via cross validation. We
then take the union of the selected variables from the two lasso regressions, and re-fit an unpenalized
outcome regression model using the union of the selected covariates as confounders. Standard errors
are calculated using the asymptotic standard errors derived in Belloni et al. (2014). We used a
similar approach to implementing the lasso-DR approach of Farrell (2015). We fit lasso models using
glmnet and cross validation and identified important covariates for both the treatment and outcome
models. Then, given these respective set of covariates for each model, we fit unpenalized estimates
of the outcome and treatment model. These are then used to estimate the doubly robust estimator
described in our manuscript. Inference is again done using the asymptotic standard errors derived in
Farrell (2015).

For the nonlinear simulation section, we restricted attention to TMLE and double machine learn-
ing as these were the most readily available to include nonlinear terms into the model. For both
approaches, we ran an initial variable selection step for both the treatment and outcome model, and
then identified important covariates as those that are in either the treatment or outcome model. For
TMLE, we take these covariates and use the TMLE package with a super learner that includes gen-
eralized additive models. Whenever the model only required linearity, we only included GLM into
the super learner to avoid using the overly flexible models when they are not necessary. For double
machine learning, we take the reduced set of covariates and fit either linear models (when the truth
is linear), or nonlinear additive models using spline representations of the covariates with 3 degrees of
freedom. Otherwise, the implementation of the double machine learning approach is the same as for
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the linear case.

J Illustration of how asymptotics suffer in high-dimensions

In this section we will compare the finite sample variance of our proposed estimator and the one
proposed by Farrell (2015). We will simulate data from sparse, linear models for both the treatment
and outcome. We will apply our doubly robust estimator with Bayesian linear models and sparsity
inducing priors as described in Section 4 of the manuscript. To build a doubly robust estimator,
Farrell (2015) fit lasso (or group lasso) regressions (Tibshirani, 1996; Yuan & Lin, 2006) on both
a treatment and outcome model to identify covariates that are associated with the treatment and
outcome respectively. Then, they re-fit non-penalized estimators of the treatment and outcome models
using only the covariates identified by the original lasso regressions. From these two regressions they
can calculate the doubly robust estimator defined in Equation 1 where pti and mti are estimated using
the non-penalized regression models. The authors derived some important theoretical results that
demonstrate that their proposed double robust estimator is consistent and asymptotically normal. Our
goal of this brief illustration is to elucidate why utilizing Bayesian methods to account for parameter
uncertainty, which do not rely on asymptotics, can provide a more accurate assessment of the finite
sample uncertainty, especially in high-dimensional scenarios. Here we focus on the estimator from
Farrell (2015) as it uses the exact same doubly robust estimator, with the main difference coming
in how inference is performed. As seen in the simulation study of the main manuscript, these ideas
extend to other estimators rooted in asymptotics.

For each of the two doubly robust estimators, we will plot two lines. First, we will show the
sampling distribution of the estimator as taken by the empirical distribution of the estimators across
a large number of simulated datasets. Next, we will plot a normal density centered at the mean of
the estimates across all datasets with a standard deviation that is the average estimated standard
error across all datasets. If the estimated standard errors are correct, then this average standard error
should be the same as the standard deviation of the sampling distribution and the two curves should
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Figure A.9: Comparison of empirical and assumed distributions for the doubly
robust estimator of Farrell (2015) and our approach from Section 3. The solid
lines are the empirical sampling distributions, while the dashed lines are normal
distributions with standard deviation equal to the average estimated standard
deviation across the simulations
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look similar. Figure A.9 shows the results for n = 100 and p ∈ {100, 300, 500}. The top row shows
the results for the estimator based on asymptotic confidence intervals and the dashed line has much
smaller tails than the solid line, indicating that the asymptotic distribution used for inference is not
properly accounting for the uncertainty in the estimator. This phenomenon gets worse as p grows
larger, and we see that the coverage probabilities decrease from 88% to 80%. Our approach to the
same estimator, however, maintains the correct coverage probabilities for any dimension of the data,
and the dashed and solid lines are very similar, showing that the uncertainty in the estimator is fully
accounted for.
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