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I congratulate Dupont, Wood and Augustin (DWA hereon) for providing an easy-to-implement
method for estimation in the presence of spatial confounding, and for addressing some of the compli-
cated aspects on the topic. The method regresses the covariate of interest on spatial basis functions
and uses the residuals of this model in an outcome regression. The authors show that, if the co-
variate is not completely spatial, this approach leads to consistent estimation of the conditional
association between the exposure and the outcome.

Below I discuss conceptual and operational issues that are fundamental to inference in spatial
settings: (i) the target quantity and its interpretability, (ii) the non-spatial aspect of covariates and
their relative spatial scales, and (iii) the impact of spatial smoothing. While DWA provide some
insights on these issues, I believe that the audience might benefit from a deeper discussion. In
what follows, I focus on the setting where a researcher is interested in interpreting the relationship
between a given covariate and an outcome. I refer to the covariate of interest as the exposure to
differentiate it from the rest.

1 What are we estimating?

First, I discuss the target of estimation in the manuscript and in the literature. This target is key
in deciding what is the appropriate method for estimation.

I begin by introducing some notation. Assume that Z and Y are the exposure and outcome
of interest, and covariates X include all the variables that confound this relationship. I use the
subscript i to denote the value of the variables at location i = 1, 2, . . . , n. In what follows, I assume
that X is comprised of four random variables: (a) a measured variable C that can be spatial or
not, and unmeasured variables of the following three types: (b) S1 that is completely spatial, (c) S+

2

that includes a spatial and an independent component, and (d) U that is not spatial. Similarly to
DWA, we can think of S+

2 as a random variable that can be written as S+
2 = S2 + E for S2 being

a completely spatial random variable and E representing a component without spatial structure.
For simplicity of discussion, I also assume that the following additive model holds:

Yi = β0 + β1Zi + β2Ci + β3Si1 + β4S
+
i2 + β5Ui + εi, (1)

where εi
iid∼ N(0, σ2). This model implies that any spatial structure in the outcome Y is due to

spatial dependencies in its predictors, though this assumption could be relaxed.

1.1 The “unconditional” association

A researcher only has access to (Ci, Zi, Yi), for i = 1, 2, . . . , n, while the remaining three random
variables in X are not measured. With these data available, a first-step analysis could regress the
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outcome, Y on the exposure and the sole observed covariate, (Z,C). Even if not directly stated,
the target of estimation in this regression is the relationship between the exposure and outcome of
interest, while conditioning solely on the measured variable:

(Y,Z) | C. (Unconditional target)

Even though the remaining variables in X are not accounted for, this relationship can be of explicit
scientific interest, especially if the measured variable C is an interpretable characteristic of the
population at hand. For example, Z, Y and C can represent a subject’s exposure to a given
pollutant, their blood pressure levels, and age, respectively. In this case, the unconditional target
represents the expected change in an individual’s blood pressure for a unit increase in the pollutant,
after adjusting for age. I refer to this target as the unconditional association as it does not condition
on the spatial random variables. For this target of estimation, the OLS estimator will be unbiased.

However, not conditioning on the remaining variables in X leads to complications for inference
for the estimated coefficient. If at least one of the coefficients of the spatial predictors are non-
zero (β3 6= 0, or β4 6= 0), the residuals of this regression would be spatially correlated. Since
correlation in the model residuals that is not accounted for would lead to incorrect inference on
model coefficients, researchers often include a spatial random effect with covariance structure that
aims to mimic the residual dependence. The goal of the random effect is to explain the spatial
dependence in the outcome that is not already explained by (Z,C). However, if the exposure Z
is, at least partially, spatial, and since the additional model components are themselves spatial,
they are often spuriously associated due to structural dependencies (Hodges & Reich 2010, Lee &
Ogburn 2020). Therefore, the random effect “involuntarily” captures part of the spatial variability
in the outcome that was originally explained by the exposure, and the coefficient of the exposure
in the model with the spatial random effect no longer has the same interpretation as the coefficient
of the non-spatial model.

The restricted spatial regression (RSR) approach ensures that the random effect is orthogonal
to the exposure of interest. That means that the target of estimation for RSR is the same as the one
from the non-spatial model, and RSR is truly useful, applicable, and unbiased for the relationship
between the exposure and the outcome conditional only on the measured variables.

1.2 The “spatially-conditional” association

The target of estimation for DWA is different. Instead of focusing on the (Y, Z) relationship when
conditioning solely on C, DWA aim to also adjust for all spatial confounders. Informally, the target
is set to learning

(Y, Z) | C, all spatial confounders, (Spatially-conditional target)

though as we will see below, it truely achieves an alternative quantity. Therefore, in the presence
of unmeasured spatial confounders, the targets of estimation for RSR and Spatial+ are different,
the coefficient of the exposure in the two models has a different interpretation, and the methods
should not be directly compared.

Since confounders are predictors of the outcome, an outcome model that does not adjust for
spatial confounders will exhibit residual spatial dependence. At the same time, since they are
predictors of the exposure, adding components in the regression model that are orthogonal to the
exposure (as in RSR) will not capture them. However, since conditioning on any spatial variable
that is not a confounder does not change the relationship under study, the spatially-conditional
target above can be re-written as

(Y,Z) | C, all spatial variables.
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Writing the target of estimation explicitly as conditioning on any spatial variable clarifies two
aspects of the manuscript. (1) If the exposure Z is fully spatial and it does not include any indepen-
dent components, then the spatially-conditional relationship cannot be learnt without additional
assumptions, since the exposure is perfectly collinear with the conditioning set. 1 (2) If Z includes
an independent component, the spatially-conditional relationship between the exposure and the
outcome can be learnt while focusing on the non-spatial aspect of the data. The former is central
in DWA’s manuscript. The latter motivates three of the approaches discussed in the manuscript:
the spatial model that includes basis functions directly in the outcome model, the gSEM model that
controls for space both in the exposure and in the outcome model, and the proposed Spatial+ model
that regresses the exposure itself on the basis functions and uses the exposure model residuals in
the outcome model. When no spatial smoothing is performed, all of these methods adjust for any
completely spatial structure in the data, and are therefore unbiased for the spatially-conditional
association, as expected, and as illustrated in the simulations. The issues that arise with smoothing
are discussed in Section 2.

The latter observation is also key in Schnell & Papadogeorgou (2020), where the authors link
this observation to the assumption of positivity in causal inference, and discuss that estimation of
the exposure coefficient can only be accurately achieved if the exposure itself varies within levels
of the spatial confounder. In the setting of DWA where the spatial confounder can vary at any
spatial frequency, this observation by Schnell & Papadogeorgou (2020) is translated to Z including
an independent component.

As discussed in Section 1.1, RSR studies the exposure-outcome relationship when conditioning
only on the measured variables. As discussed above, Spatial+ aims to extend the conditioning set
to include spatial confounders. Even though conditioning on a more complete set of confounders
is generally preferred, I illustrate that the estimated quantities from Spatial+ are not always inter-
pretable. Take for example the true outcome model in Equation (1), and assume that both spatial
variables are important (β3 6= 0, β4 6= 0) while the independent variable is not (β5 = 0). Then, we
can re-write this model as

Yi = β0 + β1Zi + β2Ci + β3Si1 + β4(Si2 + Ei) + εi,

where S2 and E decompose S+
2 in its spatial and independent components. The target of estimation

that conditions on measured variables and all spatial confounders would be

(Y, Z) | C, S1, S+
2 ≡ (Y, Z) | C, S1, S2, E.

Therefore, this target would represent the exposure-outcome relationship when conditioning on the
variables C, S1, S

+
2 . However, the E part of S+

2 is not spatial and cannot be captured by any spatial
basis function. Therefore, even though the implicit target would condition on all spatial variables,
the method instead estimates

(Y,Z) | C, S1, S2. (Spatially-conditional quantity achieved)

Since the achieved target conditions solely on part of a confounder, the estimated conditional
exposure-outcome relationship has a complicated interpretation. Whether this relationship is more
or less interpretable than the unconditional target of Section 1.1 is, I believe, up for debate!

1To make progress in this setting, one might need to make assumptions on the relative spatial scales of the
spatial confounders and the exposure, though I ignore this scenario here. This setting is investigated in Schnell &
Papadogeorgou (2020), and a related discussion in terms of the spatial scales of the spatial confounders themselves
can be found in Section 1.3.
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In the previous blood pressure example, let’s think of S1 as representing outdoor temperature
which is completely spatial, and S+

2 as representing eating habits (such as intake of salt, or fried
food). Even though eating habits are partially spatial due to local culture, they also include
an independent, subject-specific component. Then, the coefficient estimated by Spatial+ would
describe the expected change in blood pressure for a unit increase in the pollutant when adjusting
for age, temperature, and part of someone’s eating habits.

1.3 Assumptions for interpretable spatially-conditional target

Therefore, the achieved target of estimation for the Spatial+ model often has a complicated inter-
pretation, largely due to variables that include both spatial and independent components. So when
can Spatial+ be used to acquire interpretable conditional associations?

The first case corresponds to the scenario where there are no spatial confounders of the exposure-
outcome relationship that include an independent component (Papadogeorgou et al. 2019). This
assumption is implicitly made in equation (1) of DWA. If all covariates in the analysis are either
fully spatial or not spatial at all (if, for example, S+

2 = S2), then Spatial+ estimates the exposure-
outcome relationship conditional on all spatial variables, which has a clear interpretation. In turn,
if there exist covariates that include both spatial and independent components such as S+

2 , these
variables must not confound the exposure-outcome relationship when conditioning on fully spatial
variables. This can be satisfied if

E ⊥⊥ Y | Z,C, S1, S2, or E ⊥⊥ Z | C, S1, S2

where ⊥⊥ is used to denote independence. However, since all of these spatial variables are unmea-
sured, assuming that none of the spatial confounders includes an independent component remains,
exactly that, an assumption.

So what happens when we are not willing to make the assumption that all spatial confounders
are fully spatial? Progress can still be made in this setting if we are willing to make an alternative
assumption on the relative spatial scales of spatial confounders, and update Spatial+ accordingly.
Remember that the issue arises because S1 and S+

2 are both spatial and unmeasured, which forbids
us from directly differentiating between the two. To make progress, we could make an assumption
which allows us to separate the one spatial variable from the other. Such an assumption could
be the following: S+

2 varies only in higher spatial frequencies than S1. If this assumption holds,
then including spatial basis functions that represent only low-frequency spatial components would
capture S1 fully, while not capturing any aspect (spatial or independent) of S+

2 (Antonelli et al.
2017, Keller & Szpiro 2020). This could be acheived, for example, using wavelet or fourier basis
functions for which the frequency of the basis functions used is directly controllable. Under this
assumption and the corresponding adjustment of Spatial+, the method would be estimating the
exposure-outcome relationship when conditioning on C and S1 only, which would have a clear
interpretation.

1.4 Spatial confounding when estimating causal effects

If the set of covariates X includes all the confounders of the exposure-outcome relationship, then an
outcome model which adjusts for the exposure and all of the confounders and is correctly specified
can be the base for estimating causal effects (Robins 1986, Snowden et al. 2011, g-computation). I
focus first on linear additive models such as the one in Equation (1). In this case, the coefficient of
the exposure, β1, can be interpreted causally as the effect of increasing the exposure Z by one unit
on the expected outcome Y . However, the coefficient will not have the same, causal interpretation
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if we do not adjust for the variables S1, S2+ and U , which are unmeasured, nor if we only adjust
for a subset of them. Since U is a completely independent random variable, we cannot hope to
identify the causal effect of the exposure on the outcome in this manner. What’s more, adjusting
for some of the confounders, and not all, does not necessarily mean that the bias for estimating
causal effects is reduced. Instead, it could increase, if confounding from spatial and independent
variables are in opposite directions! Therefore, if unmeasured independent variables confound the
exposure-outcome relationship, adjusting for spatial unmeasured confounders does not necessarily
bring us “closer” to estimating causal effects.

However, if the true outcome model is non-linear, or includes exposure-covariate interactions,
the complications are not resolved, even if we assume the absence of independent, unmeasured con-
founders (for example, if U does not exist, and S2+ is fully spatial). In order to use the outcome
model for estimating causal effects, g-computation teaches us that we need to integrate over the
distribution of the confounders, and the coefficient of the exposure is not necessarily causally inter-
pretable (though log-linear models are an exception for a specific type of causal contrast (Schnell
& Papadogeorgou 2020)). When the spatial confounders are unmeasured, and their distribution
cannot be learnt from data, integrating over their distribution cannot be achieved directly, and
requires additional assumptions (see, for example Christiansen et al. 2020). Recently, Reich et al.
(2021) wrote a review article regarding spatial causal inference, including a thorough discussion on
spatial confounding.

2 Spatial smoothing

Based on the discussion of Section 1, we have established that the non-spatial and RSR models
estimate a different quantity compared to the rest. We have also established that regressing away
all spatial aspect of the outcome or the exposure (through, for example, unpenalized splines) would
adjust fully for the spatial component of all spatial confounders. Assuming that this quantity has
a useful interpretation, here I focus on investigating the following questions: what happens with
spatial smoothing, and how much should predictive accuracy matter?

Since spatial smoothing excludes the higher frequency components, it implies that the achieved
target represents the exposure-outcome association conditional on the spatial variables that vary
at the included, lower frequencies only. If all spatial confounders vary at lower frequencies, the
estimated quantity will truly align with the spatially-conditional association. However, even though
spatial smoothing is expected to lead to lower prediction MSE, it is not immidiately clear whether
it should be used for coefficient estimation. In the presence of high frequency spatial confounders,
spatial smoothing might lead us to “miss” these confounders.

I investigate two scenarios where the Spatial and Spatial+ models might miss strong, high
frequency spatial confounders, and return biased estimates of the spatially-conditional association. 2

These spatial variables can be strong confounders in at least two different ways: (1) they can be
important predictors of the exposure and weak predictors of the outcome, or (2) they can be weak
predictors of the exposure, and important predictors of the outcome. In the former case, since the
high-frequency spatial variables are strong predictors of the exposure, one hopes that the choice
of penalty in the exposure model for Spatial+ will not penalize these high frequency components
heavily. The reverse is true for the Spatial model, for which we would expect that it will penalize
the high frequency spatial basis functions more heavily, as these are weak predictors of the outcome.
Therefore, in this scenario, we would expect Spatial+ to perform better than the Spatial model
for estimating the spatially-conditional association. The reverse is true in the latter case. If the

2Remember that the Spatial model employs spatial basis functions in the outcome model.
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spatial confounders are weak predictors of the exposure, it is expected that the chosen penalty for
the exposure model according to Spatial+ will penalize the high frequency components heavily,
returning biased estimates of the spatially-conditional association. In contrast, we would expect
the Spatial model that includes spatial basis functions in the outcome model directly to perform
more accurately.

Even though it is prudent not to overly generalize the message from this discussion, I believe
that deeper investigation is warranted on how the methods perform under different confounding
scenarios. That is essential under the light of similar observations from other parts of the literature
that focus on estimation rather than prediction, and encourage the use of both an exposure and
an outcome model simultaneously (e.g., Wang et al. 2012, Belloni et al. 2014, Shortreed & Ertefaie
2017, Antonelli et al. 2019). Specificially in the setting of spatial confounding, the use of both
models is proposed in at least two approaches (gSEM, investigated in the manuscript; Thaden &
Kneib (2018) and Schnell & Papadogeorgou (2020)). If we view gSEM as a combination of the
Spatial and Spatial+ models in that it adjusts for spatial effects in both the exposure and the
outcome model, one might expect gSEM to be more robust to high frequency spatial confounding
than any of the two methods separately.

Finally, the work referenced above has been crucial in illuminating that prediction and estima-
tion are two separate goals, and that methodology that is appropriate for one can be inappropriate
for the other. In light of this work, even though the methods’ predictive accuracy can inform us of
how well each model fits the data, it should not be used as a model-choice criterion when we are
interested in interpreting estimated parameters. In fact, a model with lower AIC might often have
higher bias for the coefficient of interest.
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