
Bayesian Analysis (0000) 00, Number 0, pp. 1

Discussion of “Bayesian Regression Tree
Models for Causal Inference: Regularization,
Confounding, and Heterogeneous Effects”

Georgia Papadogeorgou∗ , and Fan Li†

We congratulate Hahn, Murray and Carvalho (henceforth referred to as HMC) for their
important contribution to the growing field of Bayesian causal inference. The authors
tackle the problem of estimating treatment effect heterogeneity through conditional av-
erage treatment effects (CATE), a hard problem that can be framed within the context
of high dimensional causal inference and multiple hypothesis testing. HMC adopt a flex-
ible outcome model and they discuss the importance of prior specifications within the
Bayesian framework that achieve a two-fold goal: appropriate confounding adjustment
for unbiased effect estimation, and sufficient flexibility for estimation of heterogeneity.
We regard the separation of these two components within the modeling framework as
the most attractive feature of the proposed approach. First, the authors stress the im-
portance of including the estimated propensity scores in the outcome model for more
accurate confounding adjustment. Even though the use of propensity scores in Bayesian
causal inference is subject to debate (see Section 1), we believe it is an important mes-
sage to stress the central role of the propensity score in causal inference, irrespective of
the mode of inference. Second, we believe that estimation of CATE is rightfully placed
within the Bayesian framework in which the model formulation allows for heterogene-
ity along any covariate while shrinking small signals towards homogeneity. By viewing
estimation of CATE within the scope of multiple testing, the Bayesian framework pro-
vides an inherent and automatic way for multiplicity control (Scott and Berger, 2010),
while acknowledging and documenting uncertainty in estimating heterogeneity along all
covariates.

With our discussion, we hope to shed light to the following aspects of this approach:
(1) What is the role of the propensity score in Bayesian causal inference? (2) How does
shrinkage towards homogeneity drive estimation of CATE? (3) What is the interplay
between the choice of non-parametric prior distribution and limited covariate overlap
in terms of uncertainty quantification in the estimation of CATE?

1 The role of propensity score in Bayesian causal
inference and double-robustness

There has been a long debate of the role of propensity score in Bayesian causal infer-
ence (Sims, 2006; McCandless et al., 2009; Robins and Wasserman, 2012; Zigler et al.,
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2 Discussion of Hahn et al.

2013; Robins et al., 2015). On one hand, under the assumption of ignorable assignment

mechanism (and the parameters of the propensity score model and outcome model are

a priori independent and distinct) (Ding and Li, 2018), the propensity score drops

out from the likelihood of the outcomes, and therefore in principle does not matter in

Bayesian causal inference. On the other hand, vast empirical evidences (including HMC)

suggest that proper inclusion of the propensity score substantially improves Bayesian

causal inference. To understand the reason of adding the propensity score as a pre-

dictor in the outcome model, it is important to first clarify this seemingly paradoxical

phenomenon. First, Robins et al. (2015) pointed out that the propensity score, as a

one-dimensional summary of the covariates, is crucial for dimension reduction in causal

inference with high dimensional data, irrespective of the mode of inference. A second

important insight comes from the frequentist’s perspective. Belloni et al. (2014) show

that good performance in predicting either the observed outcome or the propensity score

alone does not necessarily translate into good performance in estimating the causal ef-

fects. Chernozhukov et al. (2018) further pointed out that it is necessary to combine

high-dimensional (e.g. machine learning) models for estimating the propensity score and

outcome models in order to achieve
√
N consistency in estimating the average treatment

effect. These insights speak to the necessity of combining propensity score and outcome

models for estimating causal effects in high-dimensional settings. This is closely related

to the class of double-robust (DR) estimators (Scharfstein et al., 1999; Lunceford and

Davidian, 2004; Bang and Robins, 2005). An estimator is DR if it is consistent as long

as either the propensity score model or the outcome model, but not necessarily both,

is correctly specified. Though the concept of DR was originally developed in the form

of inverse probability weighting, many different forms have since been proposed, the

essence of which is to augment a propensity score estimator (weighting, stratification,

or matching) by an outcome model or vice versa.

We view HMC’s proposal as a Bayesian analogue of DR. A similar frequentist pro-

posal, due to Rod Little and co-authors, uses the propensity score (in the form of

penalized splines) as an additional predictor in the outcome model (e.g. Little and An,

2004; Zhou et al., 2019). In a sense, both HMC and Little’s methods can be viewed as

a continuous version of the mixed approach of combining propensity score stratification

and outcome modeling (Gutman and Rubin, 2013): conducting an outcome regression

within the stratum of a specific propensity score range. While the theoretical and em-

pirical advantages of the DR estimators over non augmented-estimators have been well

established in the frequentist’s paradigm (e.g., Funk et al., 2011), HMC are among the

first to do so in the Bayesian paradigm (another example is Antonelli et al. (2018)),

which also naturally expands the domain of DR from estimating average treatment ef-

fects to CATEs. Moving forward, we believe it would be worthwhile to rigorously define

the Bayesian analog of DR (a definition of which is given by Antonelli et al. (2018))

and prove the DR property of the specific prior. This will allow analysts to generalize

from the BART prior to other Bayesian nonparametric priors (See Section 3).

imsart-ba ver. 2014/10/16 file: output.tex date: September 16, 2020



Papadogeorgou and Li 3

2 Homogeneity-induced bias: The bias-variance
trade-off of compromising between separate and
simultaneous modeling

BART has a number of advantages, remarkably its robustness to the choice of hyper-
parameters, making it an attractive tool for causal effect estimation, including in the
presence of heterogeneity. So there is substantial merit in understanding how BART
can be used best for estimating CATEs. In this section, we dive into the implications of
imposing a prior distribution that shrinks towards homogeneity of treatment effects.

For simplicity, we consider a single covariate X. We focus on the CATE τ(x) =
E[Yi(1)−Yi(0)|Xi = x] and on three ways to use BART: (Separate) adopt independent
BART priors to model Y given X within the treated and control groups, (Simultane-
ous) specify E[Y |Z,X] using a BART prior, and (HMC) the proposed approach. The
separate model provides full flexibility for estimating heterogeneous treatment effects
since the mean potential outcome under each treatment arm is modeled separately and
without any sharing of information between treated and control groups. In contrast, the
simultaneous BART model uses the same tree structure for estimating the two potential
outcomes, and treatment effect heterogeneity is described via tree branches that split
both on the treatment and the covariate. We view the approach of HMC as a “compro-
mise” between separate and simultaneous modeling. By adopting two BART priors, the
authors allow for flexible modeling of E[Y (0)|X] and penalize deviations of E[Y (1)|X]
towards homogeneity of treatment effects. In that sense, their model formulation can be
thought of as including a tree structure that forces the first split along Z. Therefore, the
proposed approach shares information among treated and control groups, but ensures
that shrinkage of estimates of τ(x) are towards homogeneity.

We compare the full flexibility of separate modeling to the flexibility using the ap-
proach by HMC in estimating the CATE. We consider a data generation scenario for
which the covariate X is generated from X ∼ N(0, 1), and treatment and outcome are
generated as

Z | X ∼ Bernoulli(p(X)), logit(p(X)) = 2X

Y | Z,X ∼ N(0.1Z +X2 + Z sin(kXπ), 1).

In this case, τ(x) = 0.1 + sin(kxπ). We consider values of k ∈ {1/2, 1, 2, 4} describing
increasingly complex CATE. The dashed black lines in Figure 1 show the true values
of τ(x). We estimate τ(x) based on a sample of size 300, and for values of x for which
covariate overlap exists (within the 0.1 and 0.9 quantiles of the standard normal distri-
bution). We use the standard implementations of BART in the BayesTree R package
for the separate model, and the R package bcf by HMC employing the true and known
propensity score.

Figure 1 shows estimates of τ(x) and pointwise 95% credible intervals for the sepa-
rate and HMC methods. When τ(x) varies smoothly as a function of x (k ∈ {1/2, 1}),
the model of HMC is more efficient for estimating the CATE than the separate model.
However, when τ(x) varies quickly with x (k ∈ {2, 4}), HMC’s approach mistakenly

imsart-ba ver. 2014/10/16 file: output.tex date: September 16, 2020



4 Discussion of Hahn et al.

−2

0

2

4

−1.0 −0.5 0.0 0.5 1.0

τ(
x)

(a) k = 1/2

−3

−2

−1

0

1

2

3

−1.0 −0.5 0.0 0.5 1.0

τ(
x)

(b) k = 1

−2

0

2

−1.0 −0.5 0.0 0.5 1.0

τ(
x)

(c) k = 2

−2

0

2

−1.0 −0.5 0.0 0.5 1.0

τ(
x)

(d) k = 4

Separate HMC

Figure 1: Estimates of heterogeneous treatment effects τ(x) and pointwise 95% credible
intervals for the separate model (blue) and the model of HMC (red) based on a sample
of size 300 and increasing complex heterogeneity structure. The dashed black lines show
the true value of τ(x).

shrinks effect estimates towards homogeneity. These results indicate that, compared to
the separate model, the approach by HMC has lower variance, but has the potential
to lead to homogeneity-induced bias. Even though this bias is expected to be elimi-
nated as sample size increases, this illustration indicates that the homogeneity-inducing
BART prior might lead to large biases in the presence of a highly-complex heterogeneity
structure.

In most applications, highly complex heterogeneity across a single covariate like the
one in Figure 1 for k ∈ {2, 4} is unlikely to exist. However, these scenarios are represen-
tative of situations with many covariates for which heterogeneity along each covariate
separately might be small, but the true heterogeneity structure includes interactions
among multiple covariates. In these situations, the homogeneity-inducing prior is ex-
pected to fail to identify the true complexity of HTE. In that sense, if the “subgroup” for
which treatment is most effective is defined in terms of multiple subject characteristics,
we suspect that the homogeneity-inducing prior would lead to estimates of τ(x) that
fail to identify it. This bias-variance trade-off between CATE complexity and efficient
estimation will be exacerbated by having a limited number observations in an area or
the covariate space, and perhaps limited overlap.

3 Choice of Bayesian nonparametric prior distribution

BART is one example of the general class of Bayesian nonparametric priors. A natural
question would be “what about other priors?” In the context of CATE estimation, a
particular relevant issue is (covariate) overlap and uncertainty quantification. Specifi-
cally, HMC demonstrated that the advantages in terms of point estimates of their BART
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prior over several other methods vary according to the degree of confounding, which is
commonly referred to as overlap in the standard terminology of causal inference. Heuris-
tically speaking, overlap means the similarity of the covariate distributions between the
treatment and control groups. Overlap is a key concept that separates causal inference
from traditional two-sample inference. In the region with good overlap (or low confound-
ing in HMC’s terminology), different specification of the outcome model usually leads
to similar causal estimates. In contrast, in the region with poor overlap, the uncertainty
of causal estimation is much higher and the results are sensitive to the specification of
the outcome model. Thus, besides point estimation, an important criterion in choosing
the outcome model for CATE estimation is proper uncertainty quantification.

Given its underlying tree structure, intuitively BART may not have the flexibility
to capture the additional uncertainty in regions of poor overlap, whereas some other
“smoother” Bayesian nonparametric models such as the Gaussian Process may fare
better. We demonstrate this through a toy example thanks to Surya Tokdar (who grants
us the permission). Consider a scenario where a single covariate ‘age’ influences both
treatment assignment and a continuous outcome; younger people are more likely to
receive the treatment and higher outcome scores. Specifically, we generate a sample
with 200 treated units and 300 control units. The only covariate (Xi) follows a Gamma
distribution with mean 60 and 35 in the control and treatment group, respectively, and
with standard deviation 8 in both groups. The true outcome model is as follows:

Yi = 90 · 1{Zi = 1}+ 82 · 1{1− Zi} − 0.2Xi + εi, εi ∼ N(0, 1).

As shown in the data cloud by group in Figure 2, the above data generating process
creates a case where the degree of overlap varies significantly across the range of the
single covariate: there is good overlap around age of 40, but lack of overlap increases as
we move to the two tails of the range of age.

To estimate the CATE, we fit the following outcome model separately in the treat-

ment and control groups: Yi = f(Xi) + εi, εi
iid∼ N(0, σ2). We choose three prior spec-

ifications for f(x): (1) a BART prior similarly to Hill (2011) and HMC but without
the propensity score; (2) a linear model with Gaussian prior: f(x) ∼ N(βx, δ2); (3)
a GP prior (Rasmussen, 2003) with the covariance function specified using a Gaus-
sian kernel with signal-to-noise ratio parameter ρ and inverse-bandwidth parameter λ:
(f(x1), f(x2), . . . , f(xn))T ∼ N(0,Σ) where Σij = σ2ρ2 exp{−λ2‖xi − xj‖2}). For each
unit, we predict the missing counterfactual outcome by plugging the covariate into the
fitted model of the opposite group, and then estimate the individual treatment effect by
the difference between observed outcome and predicted counterfactual outcome. Figure
2 shows the predicted counterfactuals and the CATE, as well as the associated uncer-
tainty band as a function of age. The true effects curve is deliberately omitted to focus
on issue of uncertainty quantification. In the region of good overlap, all three models lead
to similar point and interval estimates of CATE. However, marked difference emerges
in the region of poor overlap. Here the linear model appears overconfident in predicting
counterfactuals and thus estimating the CATE. GP trades potential bias with increased
uncertainty bands as overlap decreases and produces a more adaptive uncertainty quan-
tification. BART produces shorter error bars than GP (but wider than LM), but width
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Figure 2: In a toy example a single covariate ‘age’ influences both treatment assignment and a continuous
“outcome”; younger people are more likely to receive treatment and higher outcome scores. For either
group, counterfactuals are predicted by learning outcome-age relation from the other group’s data and
estimated treatment effect (“Effect”), i.e., the difference between predicted outcome and predicted counter-
factual outcome, is shown as a function of age. The true effects curve is deliberately omitted to focus on
the issues of potential prediction bias arising from confounding. Linear model (LM) fits are good within
groups, but appear overconfident while predicting counterfactuals. Add-GP trades potential bias with in-
creased uncertainty bands and produces a more robust effect quantification. BART, which has been used
by Hill (2011) for counterfactual prediction, produces shorter error bars and remains prone to bias.

to the ideas of matching (Rosenbaum & Rubin, 1983; Stuart, 2010), but add-GP offers several con-
ceptual and practical advantages: A) it works effortlessly with binary, multi-category, continuous
outcomes, and potentially vector valued treatments; B) it requires no formal “balance check”12

– which is often hard to implement for high-dimensional Z and continuous treatment variables
(Hill, 2008) – instead lack of local balance is flagged by widening of prediction uncertainty (see
Figure 2); C) it does not require removing observation units that contribute to non-overlapping
propensity score distributions13, rather such units are viewed as data units that will produce very
isolated (t, Zi) pairs and this incur widest prediction error bars.

5.2.2 Validation objectives. We will carry out detailed validation studies to investigate the follow-
ing questions.

1. Does add-GP retain its “trade confounding-bias for variance” principle when analyzing high
dimensional, noisy, heterogeneous data, and, offer reliable inference on treatment effects in
presence of confounding?

2. Can add-GP, with its ability to predict a wide variety of counterfactuals14, expand public pol-
icy research by answering questions that could not be answered earlier with more restrictive

12For binary treatment T ∈ {−1, 1} it requires checking that, post-matching, the sample distributions of Z|(T = 1)
and Z|(T = −1) are close to each other.

13Again, for binary treatment, non-overlapping is said to have occurred if the range of {Q(T = 1|Z = Zi) : Ti = 1}
is (substantially) different from the range of {Q(T = 1|Z = Zi) : Ti = −1}.

14The observation that would have been obtained if a unit was assigned to a different treatment or given a different
dose.

10

Figure 2: Estimates of missing counterfactuals (upper panel) and CATE (lower panel)
and corresponding uncertainty band as a function of the single covariate ‘Age’ by three
different models: linear model (LM); Gaussian Process (GP); BART, in the example of
poor overlap (or high confounding) in Section 3. ×: treated units; ◦: control units.

of the uncertainty band remains similar regardless of the degree of overlap, which is
clearly over confident in the region of poor overlap. This pattern is not surprising given
how GP and BART are constructed, on which we do not elaborate here.

Of course, it is prudent not to overly generalize the message from a single example.
Nonetheless, we feel that deeper investigation is warranted on how BART-based and
other Bayesian nonparametric priors perform in terms of uncertainty quantification of
CATE under different degree of overlap, which is a central problem in causal inference
with high dimensional data and high dimensional estimation targets.
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